756 lines
27 KiB
C++
756 lines
27 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifndef HAVE_CUDA
|
|
|
|
class cv::gpu::FGDStatModel::Impl
|
|
{
|
|
};
|
|
|
|
cv::gpu::FGDStatModel::Params::Params() { throw_nogpu(); }
|
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(int) { throw_nogpu(); }
|
|
cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat&, const Params&, int) { throw_nogpu(); }
|
|
cv::gpu::FGDStatModel::~FGDStatModel() {}
|
|
void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat&, const Params&) { throw_nogpu(); }
|
|
void cv::gpu::FGDStatModel::release() {}
|
|
int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat&) { throw_nogpu(); return 0; }
|
|
|
|
#else
|
|
|
|
#include "fgd_bgfg_common.hpp"
|
|
|
|
namespace
|
|
{
|
|
class BGPixelStat
|
|
{
|
|
public:
|
|
void create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn);
|
|
void release();
|
|
|
|
void setTrained();
|
|
|
|
operator bgfg::BGPixelStat();
|
|
|
|
private:
|
|
cv::gpu::GpuMat Pbc_;
|
|
cv::gpu::GpuMat Pbcc_;
|
|
cv::gpu::GpuMat is_trained_st_model_;
|
|
cv::gpu::GpuMat is_trained_dyn_model_;
|
|
|
|
cv::gpu::GpuMat ctable_Pv_;
|
|
cv::gpu::GpuMat ctable_Pvb_;
|
|
cv::gpu::GpuMat ctable_v_;
|
|
|
|
cv::gpu::GpuMat cctable_Pv_;
|
|
cv::gpu::GpuMat cctable_Pvb_;
|
|
cv::gpu::GpuMat cctable_v1_;
|
|
cv::gpu::GpuMat cctable_v2_;
|
|
};
|
|
|
|
void BGPixelStat::create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn)
|
|
{
|
|
cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbc_);
|
|
Pbc_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbcc_);
|
|
Pbcc_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_st_model_);
|
|
is_trained_st_model_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_dyn_model_);
|
|
is_trained_dyn_model_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pv_);
|
|
ctable_Pv_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pvb_);
|
|
ctable_Pvb_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_8UC(out_cn), ctable_v_);
|
|
ctable_v_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pv_);
|
|
cctable_Pv_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pvb_);
|
|
cctable_Pvb_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v1_);
|
|
cctable_v1_.setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v2_);
|
|
cctable_v2_.setTo(cv::Scalar::all(0));
|
|
}
|
|
|
|
void BGPixelStat::release()
|
|
{
|
|
Pbc_.release();
|
|
Pbcc_.release();
|
|
is_trained_st_model_.release();
|
|
is_trained_dyn_model_.release();
|
|
|
|
ctable_Pv_.release();
|
|
ctable_Pvb_.release();
|
|
ctable_v_.release();
|
|
|
|
cctable_Pv_.release();
|
|
cctable_Pvb_.release();
|
|
cctable_v1_.release();
|
|
cctable_v2_.release();
|
|
}
|
|
|
|
void BGPixelStat::setTrained()
|
|
{
|
|
is_trained_st_model_.setTo(cv::Scalar::all(1));
|
|
is_trained_dyn_model_.setTo(cv::Scalar::all(1));
|
|
}
|
|
|
|
BGPixelStat::operator bgfg::BGPixelStat()
|
|
{
|
|
bgfg::BGPixelStat stat;
|
|
|
|
stat.rows_ = Pbc_.rows;
|
|
|
|
stat.Pbc_data_ = Pbc_.data;
|
|
stat.Pbc_step_ = Pbc_.step;
|
|
|
|
stat.Pbcc_data_ = Pbcc_.data;
|
|
stat.Pbcc_step_ = Pbcc_.step;
|
|
|
|
stat.is_trained_st_model_data_ = is_trained_st_model_.data;
|
|
stat.is_trained_st_model_step_ = is_trained_st_model_.step;
|
|
|
|
stat.is_trained_dyn_model_data_ = is_trained_dyn_model_.data;
|
|
stat.is_trained_dyn_model_step_ = is_trained_dyn_model_.step;
|
|
|
|
stat.ctable_Pv_data_ = ctable_Pv_.data;
|
|
stat.ctable_Pv_step_ = ctable_Pv_.step;
|
|
|
|
stat.ctable_Pvb_data_ = ctable_Pvb_.data;
|
|
stat.ctable_Pvb_step_ = ctable_Pvb_.step;
|
|
|
|
stat.ctable_v_data_ = ctable_v_.data;
|
|
stat.ctable_v_step_ = ctable_v_.step;
|
|
|
|
stat.cctable_Pv_data_ = cctable_Pv_.data;
|
|
stat.cctable_Pv_step_ = cctable_Pv_.step;
|
|
|
|
stat.cctable_Pvb_data_ = cctable_Pvb_.data;
|
|
stat.cctable_Pvb_step_ = cctable_Pvb_.step;
|
|
|
|
stat.cctable_v1_data_ = cctable_v1_.data;
|
|
stat.cctable_v1_step_ = cctable_v1_.step;
|
|
|
|
stat.cctable_v2_data_ = cctable_v2_.data;
|
|
stat.cctable_v2_step_ = cctable_v2_.step;
|
|
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
class cv::gpu::FGDStatModel::Impl
|
|
{
|
|
public:
|
|
Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector<cv::Point> >& foreground_regions, int out_cn);
|
|
~Impl();
|
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params);
|
|
void release();
|
|
|
|
int update(const cv::gpu::GpuMat& curFrame);
|
|
|
|
private:
|
|
Impl(const Impl&);
|
|
Impl& operator=(const Impl&);
|
|
|
|
int out_cn_;
|
|
|
|
cv::gpu::FGDStatModel::Params params_;
|
|
|
|
cv::gpu::GpuMat& background_;
|
|
cv::gpu::GpuMat& foreground_;
|
|
std::vector< std::vector<cv::Point> >& foreground_regions_;
|
|
|
|
cv::Mat h_foreground_;
|
|
|
|
cv::gpu::GpuMat prevFrame_;
|
|
cv::gpu::GpuMat Ftd_;
|
|
cv::gpu::GpuMat Fbd_;
|
|
BGPixelStat stat_;
|
|
|
|
cv::gpu::GpuMat hist_;
|
|
cv::gpu::GpuMat histBuf_;
|
|
|
|
cv::gpu::GpuMat countBuf_;
|
|
|
|
cv::gpu::GpuMat buf_;
|
|
cv::gpu::GpuMat filterBuf_;
|
|
cv::gpu::GpuMat filterBrd_;
|
|
|
|
cv::Ptr<cv::gpu::FilterEngine_GPU> dilateFilter_;
|
|
cv::Ptr<cv::gpu::FilterEngine_GPU> erodeFilter_;
|
|
|
|
CvMemStorage* storage_;
|
|
};
|
|
|
|
cv::gpu::FGDStatModel::Impl::Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector<cv::Point> >& foreground_regions, int out_cn) :
|
|
out_cn_(out_cn), background_(background), foreground_(foreground), foreground_regions_(foreground_regions)
|
|
{
|
|
CV_Assert( out_cn_ == 3 || out_cn_ == 4 );
|
|
|
|
storage_ = cvCreateMemStorage();
|
|
CV_Assert( storage_ != 0 );
|
|
}
|
|
|
|
cv::gpu::FGDStatModel::Impl::~Impl()
|
|
{
|
|
cvReleaseMemStorage(&storage_);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
void copyChannels(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, int dst_cn = -1)
|
|
{
|
|
const int src_cn = src.channels();
|
|
|
|
if (dst_cn < 0)
|
|
dst_cn = src_cn;
|
|
|
|
cv::gpu::ensureSizeIsEnough(src.size(), CV_MAKE_TYPE(src.depth(), dst_cn), dst);
|
|
|
|
if (src_cn == dst_cn)
|
|
src.copyTo(dst);
|
|
else
|
|
{
|
|
static const int cvt_codes[4][4] =
|
|
{
|
|
{-1, -1, cv::COLOR_GRAY2BGR, cv::COLOR_GRAY2BGRA},
|
|
{-1, -1, -1, -1},
|
|
{cv::COLOR_BGR2GRAY, -1, -1, cv::COLOR_BGR2BGRA},
|
|
{cv::COLOR_BGRA2GRAY, -1, cv::COLOR_BGRA2BGR, -1}
|
|
};
|
|
|
|
const int cvt_code = cvt_codes[src_cn - 1][dst_cn - 1];
|
|
CV_DbgAssert( cvt_code >= 0 );
|
|
|
|
cv::gpu::cvtColor(src, dst, cvt_code, dst_cn);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::gpu::FGDStatModel::Impl::create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params)
|
|
{
|
|
CV_Assert(firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4);
|
|
|
|
params_ = params;
|
|
|
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, foreground_);
|
|
|
|
copyChannels(firstFrame, background_, out_cn_);
|
|
|
|
copyChannels(firstFrame, prevFrame_);
|
|
|
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Ftd_);
|
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Fbd_);
|
|
|
|
stat_.create(firstFrame.size(), params_, out_cn_);
|
|
bgfg::setBGPixelStat(stat_);
|
|
|
|
if (params_.perform_morphing > 0)
|
|
{
|
|
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(1 + params_.perform_morphing * 2, 1 + params_.perform_morphing * 2));
|
|
cv::Point anchor(params_.perform_morphing, params_.perform_morphing);
|
|
|
|
dilateFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_DILATE, CV_8UC1, kernel, filterBuf_, anchor);
|
|
erodeFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_ERODE, CV_8UC1, kernel, filterBuf_, anchor);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::FGDStatModel::Impl::release()
|
|
{
|
|
background_.release();
|
|
foreground_.release();
|
|
|
|
prevFrame_.release();
|
|
Ftd_.release();
|
|
Fbd_.release();
|
|
stat_.release();
|
|
|
|
hist_.release();
|
|
histBuf_.release();
|
|
|
|
countBuf_.release();
|
|
|
|
buf_.release();
|
|
filterBuf_.release();
|
|
filterBrd_.release();
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// changeDetection
|
|
|
|
namespace
|
|
{
|
|
void calcDiffHistogram(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf)
|
|
{
|
|
typedef void (*func_t)(cv::gpu::DevMem2Db prevFrame, cv::gpu::DevMem2Db curFrame, unsigned int* hist0, unsigned int* hist1, unsigned int* hist2, unsigned int* partialBuf0, unsigned int* partialBuf1, unsigned int* partialBuf2, int cc, cudaStream_t stream);
|
|
static const func_t funcs[4][4] =
|
|
{
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,bgfg::calcDiffHistogram_gpu<uchar3, uchar3>,bgfg::calcDiffHistogram_gpu<uchar3, uchar4>},
|
|
{0,0,bgfg::calcDiffHistogram_gpu<uchar4, uchar3>,bgfg::calcDiffHistogram_gpu<uchar4, uchar4>}
|
|
};
|
|
|
|
hist.create(3, 256, CV_32SC1);
|
|
histBuf.create(3, bgfg::PARTIAL_HISTOGRAM_COUNT * bgfg::HISTOGRAM_BIN_COUNT, CV_32SC1);
|
|
|
|
cv::gpu::DeviceInfo devInfo;
|
|
int cc = devInfo.majorVersion() * 10 + devInfo.minorVersion();
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1](
|
|
prevFrame, curFrame,
|
|
hist.ptr<unsigned int>(0), hist.ptr<unsigned int>(1), hist.ptr<unsigned int>(2),
|
|
histBuf.ptr<unsigned int>(0), histBuf.ptr<unsigned int>(1), histBuf.ptr<unsigned int>(2),
|
|
cc, 0);
|
|
}
|
|
|
|
void calcRelativeVariance(unsigned int hist[3 * 256], double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT])
|
|
{
|
|
std::memset(relativeVariance, 0, 3 * bgfg::HISTOGRAM_BIN_COUNT * sizeof(double));
|
|
|
|
for (int thres = bgfg::HISTOGRAM_BIN_COUNT - 2; thres >= 0; --thres)
|
|
{
|
|
cv::Vec3d sum(0.0, 0.0, 0.0);
|
|
cv::Vec3d sqsum(0.0, 0.0, 0.0);
|
|
cv::Vec3i count(0, 0, 0);
|
|
|
|
for (int j = thres; j < bgfg::HISTOGRAM_BIN_COUNT; ++j)
|
|
{
|
|
sum[0] += static_cast<double>(j) * hist[j];
|
|
sqsum[0] += static_cast<double>(j * j) * hist[j];
|
|
count[0] += hist[j];
|
|
|
|
sum[1] += static_cast<double>(j) * hist[j + 256];
|
|
sqsum[1] += static_cast<double>(j * j) * hist[j + 256];
|
|
count[1] += hist[j + 256];
|
|
|
|
sum[2] += static_cast<double>(j) * hist[j + 512];
|
|
sqsum[2] += static_cast<double>(j * j) * hist[j + 512];
|
|
count[2] += hist[j + 512];
|
|
}
|
|
|
|
count[0] = std::max(count[0], 1);
|
|
count[1] = std::max(count[1], 1);
|
|
count[2] = std::max(count[2], 1);
|
|
|
|
cv::Vec3d my(
|
|
sum[0] / count[0],
|
|
sum[1] / count[1],
|
|
sum[2] / count[2]
|
|
);
|
|
|
|
relativeVariance[0][thres] = std::sqrt(sqsum[0] / count[0] - my[0] * my[0]);
|
|
relativeVariance[1][thres] = std::sqrt(sqsum[1] / count[1] - my[1] * my[1]);
|
|
relativeVariance[2][thres] = std::sqrt(sqsum[2] / count[2] - my[2] * my[2]);
|
|
}
|
|
}
|
|
|
|
void calcDiffThreshMask(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::Vec3d bestThres, cv::gpu::GpuMat& changeMask)
|
|
{
|
|
typedef void (*func_t)(cv::gpu::DevMem2Db prevFrame, cv::gpu::DevMem2Db curFrame, uchar3 bestThres, cv::gpu::DevMem2Db changeMask, cudaStream_t stream);
|
|
static const func_t funcs[4][4] =
|
|
{
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,bgfg::calcDiffThreshMask_gpu<uchar3, uchar3>,bgfg::calcDiffThreshMask_gpu<uchar3, uchar4>},
|
|
{0,0,bgfg::calcDiffThreshMask_gpu<uchar4, uchar3>,bgfg::calcDiffThreshMask_gpu<uchar4, uchar4>}
|
|
};
|
|
|
|
changeMask.setTo(cv::Scalar::all(0));
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1](prevFrame, curFrame, make_uchar3(bestThres[0], bestThres[1], bestThres[2]), changeMask, 0);
|
|
}
|
|
|
|
// performs change detection for Foreground detection algorithm
|
|
void changeDetection(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& changeMask, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf)
|
|
{
|
|
calcDiffHistogram(prevFrame, curFrame, hist, histBuf);
|
|
|
|
unsigned int histData[3 * 256];
|
|
cv::Mat h_hist(3, 256, CV_32SC1, histData);
|
|
hist.download(h_hist);
|
|
|
|
double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT];
|
|
calcRelativeVariance(histData, relativeVariance);
|
|
|
|
// Find maximum:
|
|
cv::Vec3d bestThres(10.0, 10.0, 10.0);
|
|
for (int i = 0; i < bgfg::HISTOGRAM_BIN_COUNT; ++i)
|
|
{
|
|
bestThres[0] = std::max(bestThres[0], relativeVariance[0][i]);
|
|
bestThres[1] = std::max(bestThres[1], relativeVariance[1][i]);
|
|
bestThres[2] = std::max(bestThres[2], relativeVariance[2][i]);
|
|
}
|
|
|
|
calcDiffThreshMask(prevFrame, curFrame, bestThres, changeMask);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// bgfgClassification
|
|
|
|
namespace
|
|
{
|
|
int bgfgClassification(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame,
|
|
const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd,
|
|
cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& countBuf,
|
|
const cv::gpu::FGDStatModel::Params& params, int out_cn)
|
|
{
|
|
typedef void (*func_t)(cv::gpu::DevMem2Db prevFrame, cv::gpu::DevMem2Db curFrame, cv::gpu::DevMem2Db Ftd, cv::gpu::DevMem2Db Fbd, cv::gpu::DevMem2Db foreground,
|
|
int deltaC, int deltaCC, float alpha2, int N1c, int N1cc, cudaStream_t stream);
|
|
static const func_t funcs[4][4][4] =
|
|
{
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,bgfg::bgfgClassification_gpu<uchar3, uchar3, uchar3>,bgfg::bgfgClassification_gpu<uchar3, uchar3, uchar4>},
|
|
{0,0,bgfg::bgfgClassification_gpu<uchar3, uchar4, uchar3>,bgfg::bgfgClassification_gpu<uchar3, uchar4, uchar4>}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,bgfg::bgfgClassification_gpu<uchar4, uchar3, uchar3>,bgfg::bgfgClassification_gpu<uchar4, uchar3, uchar4>},
|
|
{0,0,bgfg::bgfgClassification_gpu<uchar4, uchar4, uchar3>,bgfg::bgfgClassification_gpu<uchar4, uchar4, uchar4>}
|
|
}
|
|
};
|
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc);
|
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][out_cn - 1](prevFrame, curFrame, Ftd, Fbd, foreground, deltaC, deltaCC, params.alpha2, params.N1c, params.N1cc, 0);
|
|
|
|
int count = cv::gpu::countNonZero(foreground, countBuf);
|
|
|
|
cv::gpu::multiply(foreground, cv::Scalar::all(255), foreground);
|
|
|
|
return count;
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// smoothForeground
|
|
|
|
namespace
|
|
{
|
|
void morphology(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, cv::gpu::GpuMat& filterBrd, int brd, cv::Ptr<cv::gpu::FilterEngine_GPU>& filter, cv::Scalar brdVal)
|
|
{
|
|
cv::gpu::copyMakeBorder(src, filterBrd, brd, brd, brd, brd, cv::BORDER_CONSTANT, brdVal);
|
|
filter->apply(filterBrd(cv::Rect(brd, brd, src.cols, src.rows)), dst, cv::Rect(0, 0, src.cols, src.rows));
|
|
}
|
|
|
|
void smoothForeground(cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& filterBrd, cv::gpu::GpuMat& buf,
|
|
cv::Ptr<cv::gpu::FilterEngine_GPU>& erodeFilter, cv::Ptr<cv::gpu::FilterEngine_GPU>& dilateFilter,
|
|
const cv::gpu::FGDStatModel::Params& params)
|
|
{
|
|
const int brd = params.perform_morphing;
|
|
|
|
const cv::Scalar erodeBrdVal = cv::Scalar::all(UCHAR_MAX);
|
|
const cv::Scalar dilateBrdVal = cv::Scalar::all(0);
|
|
|
|
// MORPH_OPEN
|
|
morphology(foreground, buf, filterBrd, brd, erodeFilter, erodeBrdVal);
|
|
morphology(buf, foreground, filterBrd, brd, dilateFilter, dilateBrdVal);
|
|
|
|
// MORPH_CLOSE
|
|
morphology(foreground, buf, filterBrd, brd, dilateFilter, dilateBrdVal);
|
|
morphology(buf, foreground, filterBrd, brd, erodeFilter, erodeBrdVal);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// findForegroundRegions
|
|
|
|
namespace
|
|
{
|
|
void seqToContours(CvSeq* _ccontours, CvMemStorage* storage, cv::OutputArrayOfArrays _contours)
|
|
{
|
|
cv::Seq<CvSeq*> all_contours(cvTreeToNodeSeq(_ccontours, sizeof(CvSeq), storage));
|
|
|
|
size_t total = all_contours.size();
|
|
|
|
_contours.create(total, 1, 0, -1, true);
|
|
|
|
cv::SeqIterator<CvSeq*> it = all_contours.begin();
|
|
for (size_t i = 0; i < total; ++i, ++it)
|
|
{
|
|
CvSeq* c = *it;
|
|
((CvContour*)c)->color = (int)i;
|
|
_contours.create((int)c->total, 1, CV_32SC2, i, true);
|
|
cv::Mat ci = _contours.getMat(i);
|
|
CV_Assert( ci.isContinuous() );
|
|
cvCvtSeqToArray(c, ci.data);
|
|
}
|
|
}
|
|
|
|
int findForegroundRegions(cv::gpu::GpuMat& d_foreground, cv::Mat& h_foreground, std::vector< std::vector<cv::Point> >& foreground_regions,
|
|
CvMemStorage* storage, const cv::gpu::FGDStatModel::Params& params)
|
|
{
|
|
int region_count = 0;
|
|
|
|
// Discard under-size foreground regions:
|
|
|
|
d_foreground.download(h_foreground);
|
|
IplImage ipl_foreground = h_foreground;
|
|
CvSeq* first_seq = 0;
|
|
|
|
cvFindContours(&ipl_foreground, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST);
|
|
|
|
for (CvSeq* seq = first_seq; seq; seq = seq->h_next)
|
|
{
|
|
CvContour* cnt = reinterpret_cast<CvContour*>(seq);
|
|
|
|
if (cnt->rect.width * cnt->rect.height < params.minArea || (params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)))
|
|
{
|
|
// Delete under-size contour:
|
|
CvSeq* prev_seq = seq->h_prev;
|
|
if (prev_seq)
|
|
{
|
|
prev_seq->h_next = seq->h_next;
|
|
|
|
if (seq->h_next)
|
|
seq->h_next->h_prev = prev_seq;
|
|
}
|
|
else
|
|
{
|
|
first_seq = seq->h_next;
|
|
|
|
if (seq->h_next)
|
|
seq->h_next->h_prev = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
region_count++;
|
|
}
|
|
}
|
|
|
|
seqToContours(first_seq, storage, foreground_regions);
|
|
h_foreground.setTo(0);
|
|
|
|
cv::drawContours(h_foreground, foreground_regions, -1, cv::Scalar::all(255), -1);
|
|
|
|
d_foreground.upload(h_foreground);
|
|
|
|
return region_count;
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// updateBackgroundModel
|
|
|
|
namespace
|
|
{
|
|
void updateBackgroundModel(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd,
|
|
const cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& background,
|
|
const cv::gpu::FGDStatModel::Params& params)
|
|
{
|
|
typedef void (*func_t)(cv::gpu::DevMem2Db prevFrame, cv::gpu::DevMem2Db curFrame, cv::gpu::DevMem2Db Ftd, cv::gpu::DevMem2Db Fbd,
|
|
cv::gpu::DevMem2Db foreground, cv::gpu::DevMem2Db background,
|
|
int deltaC, int deltaCC, float alpha1, float alpha2, float alpha3, int N1c, int N1cc, int N2c, int N2cc, float T, cudaStream_t stream);
|
|
static const func_t funcs[4][4][4] =
|
|
{
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar3, uchar3, uchar3>,bgfg::updateBackgroundModel_gpu<uchar3, uchar3, uchar4>},
|
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar3, uchar4, uchar3>,bgfg::updateBackgroundModel_gpu<uchar3, uchar4, uchar4>}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar4, uchar3, uchar3>,bgfg::updateBackgroundModel_gpu<uchar4, uchar3, uchar4>},
|
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar4, uchar4, uchar3>,bgfg::updateBackgroundModel_gpu<uchar4, uchar4, uchar4>}
|
|
}
|
|
};
|
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc);
|
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][background.channels() - 1](
|
|
prevFrame, curFrame, Ftd, Fbd, foreground, background,
|
|
deltaC, deltaCC, params.alpha1, params.alpha2, params.alpha3, params.N1c, params.N1cc, params.N2c, params.N2cc, params.T,
|
|
0);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Impl::update
|
|
|
|
int cv::gpu::FGDStatModel::Impl::update(const cv::gpu::GpuMat& curFrame)
|
|
{
|
|
CV_Assert(curFrame.type() == CV_8UC3 || curFrame.type() == CV_8UC4);
|
|
CV_Assert(curFrame.size() == prevFrame_.size());
|
|
|
|
cvClearMemStorage(storage_);
|
|
foreground_regions_.clear();
|
|
foreground_.setTo(cv::Scalar::all(0));
|
|
|
|
changeDetection(prevFrame_, curFrame, Ftd_, hist_, histBuf_);
|
|
changeDetection(background_, curFrame, Fbd_, hist_, histBuf_);
|
|
|
|
int FG_pixels_count = bgfgClassification(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, countBuf_, params_, out_cn_);
|
|
|
|
if (params_.perform_morphing > 0)
|
|
smoothForeground(foreground_, filterBrd_, buf_, erodeFilter_, dilateFilter_, params_);
|
|
|
|
int region_count = 0;
|
|
if (params_.minArea > 0 || params_.is_obj_without_holes)
|
|
region_count = findForegroundRegions(foreground_, h_foreground_, foreground_regions_, storage_, params_);
|
|
|
|
// Check ALL BG update condition:
|
|
const double BGFG_FGD_BG_UPDATE_TRESH = 0.5;
|
|
if (static_cast<double>(FG_pixels_count) / Ftd_.size().area() > BGFG_FGD_BG_UPDATE_TRESH)
|
|
stat_.setTrained();
|
|
|
|
updateBackgroundModel(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, background_, params_);
|
|
|
|
copyChannels(curFrame, prevFrame_);
|
|
|
|
return region_count;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
// Default parameters of foreground detection algorithm:
|
|
const int BGFG_FGD_LC = 128;
|
|
const int BGFG_FGD_N1C = 15;
|
|
const int BGFG_FGD_N2C = 25;
|
|
|
|
const int BGFG_FGD_LCC = 64;
|
|
const int BGFG_FGD_N1CC = 25;
|
|
const int BGFG_FGD_N2CC = 40;
|
|
|
|
// Background reference image update parameter:
|
|
const float BGFG_FGD_ALPHA_1 = 0.1f;
|
|
|
|
// stat model update parameter
|
|
// 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
|
|
const float BGFG_FGD_ALPHA_2 = 0.005f;
|
|
|
|
// start value for alpha parameter (to fast initiate statistic model)
|
|
const float BGFG_FGD_ALPHA_3 = 0.1f;
|
|
|
|
const float BGFG_FGD_DELTA = 2.0f;
|
|
|
|
const float BGFG_FGD_T = 0.9f;
|
|
|
|
const float BGFG_FGD_MINAREA= 15.0f;
|
|
}
|
|
|
|
cv::gpu::FGDStatModel::Params::Params()
|
|
{
|
|
Lc = BGFG_FGD_LC;
|
|
N1c = BGFG_FGD_N1C;
|
|
N2c = BGFG_FGD_N2C;
|
|
|
|
Lcc = BGFG_FGD_LCC;
|
|
N1cc = BGFG_FGD_N1CC;
|
|
N2cc = BGFG_FGD_N2CC;
|
|
|
|
delta = BGFG_FGD_DELTA;
|
|
|
|
alpha1 = BGFG_FGD_ALPHA_1;
|
|
alpha2 = BGFG_FGD_ALPHA_2;
|
|
alpha3 = BGFG_FGD_ALPHA_3;
|
|
|
|
T = BGFG_FGD_T;
|
|
minArea = BGFG_FGD_MINAREA;
|
|
|
|
is_obj_without_holes = true;
|
|
perform_morphing = 1;
|
|
}
|
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(int out_cn)
|
|
{
|
|
impl_.reset(new Impl(background, foreground, foreground_regions, out_cn));
|
|
}
|
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params, int out_cn)
|
|
{
|
|
impl_.reset(new Impl(background, foreground, foreground_regions, out_cn));
|
|
create(firstFrame, params);
|
|
}
|
|
|
|
cv::gpu::FGDStatModel::~FGDStatModel()
|
|
{
|
|
}
|
|
|
|
void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat& firstFrame, const Params& params)
|
|
{
|
|
impl_->create(firstFrame, params);
|
|
}
|
|
|
|
void cv::gpu::FGDStatModel::release()
|
|
{
|
|
impl_->release();
|
|
}
|
|
|
|
int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat& curFrame)
|
|
{
|
|
return impl_->update(curFrame);
|
|
}
|
|
|
|
#endif // HAVE_CUDA
|