opencv/modules/gpu/src/cuda/resize.cu
2013-08-23 18:08:06 +04:00

483 lines
20 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include <cfloat>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "opencv2/gpu/device/filters.hpp"
namespace cv { namespace gpu { namespace device
{
// kernels
template <typename T> __global__ void resize_nearest(const PtrStep<T> src, PtrStepSz<T> dst, const float fy, const float fx)
{
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
dst(dst_y, dst_x) = src(__float2int_rz(src_y), __float2int_rz(src_x));
}
}
template <typename T> __global__ void resize_linear(const PtrStepSz<T> src, PtrStepSz<T> dst, const float fy, const float fx)
{
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
work_type out = VecTraits<work_type>::all(0);
const int x1 = __float2int_rd(src_x);
const int y1 = __float2int_rd(src_y);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
const int x2_read = ::min(x2, src.cols - 1);
const int y2_read = ::min(y2, src.rows - 1);
T src_reg = src(y1, x1);
out = out + src_reg * ((x2 - src_x) * (y2 - src_y));
src_reg = src(y1, x2_read);
out = out + src_reg * ((src_x - x1) * (y2 - src_y));
src_reg = src(y2_read, x1);
out = out + src_reg * ((x2 - src_x) * (src_y - y1));
src_reg = src(y2_read, x2_read);
out = out + src_reg * ((src_x - x1) * (src_y - y1));
dst(dst_y, dst_x) = saturate_cast<T>(out);
}
}
template <class Ptr2D, typename T> __global__ void resize(const Ptr2D src, PtrStepSz<T> dst, const float fy, const float fx)
{
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
dst(dst_y, dst_x) = src(src_y, src_x);
}
}
template <typename Ptr2D, typename T> __global__ void resize_area(const Ptr2D src, PtrStepSz<T> dst)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
dst(y, x) = src(y, x);
}
}
// textures
template <typename T> struct TextureAccessor;
#define OPENCV_GPU_IMPLEMENT_RESIZE_TEX(type) \
texture<type, cudaTextureType2D, cudaReadModeElementType> tex_resize_##type (0, cudaFilterModePoint, cudaAddressModeClamp); \
template <> struct TextureAccessor<type> \
{ \
typedef type elem_type; \
typedef int index_type; \
int xoff; \
int yoff; \
__device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const \
{ \
return tex2D(tex_resize_##type, x + xoff, y + yoff); \
} \
__host__ static void bind(const PtrStepSz<type>& mat) \
{ \
bindTexture(&tex_resize_##type, mat); \
} \
};
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float4)
#undef OPENCV_GPU_IMPLEMENT_RESIZE_TEX
template <typename T>
TextureAccessor<T> texAccessor(const PtrStepSz<T>& mat, int yoff, int xoff)
{
TextureAccessor<T>::bind(mat);
TextureAccessor<T> t;
t.xoff = xoff;
t.yoff = yoff;
return t;
}
// callers for nearest interpolation
template <typename T>
void call_resize_nearest_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize_nearest<<<grid, block, 0, stream>>>(src, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_nearest_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize<<<grid, block>>>(texAccessor(srcWhole, yoff, xoff), dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// callers for linear interpolation
template <typename T>
void call_resize_linear_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize_linear<<<grid, block>>>(src, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_linear_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (srcWhole.data == src.data)
{
TextureAccessor<T> texSrc = texAccessor(src, 0, 0);
LinearFilter< TextureAccessor<T> > filteredSrc(texSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
else
{
TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff);
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd);
LinearFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// callers for cubic interpolation
template <typename T>
void call_resize_cubic_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
CubicFilter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block, 0, stream>>>(filteredSrc, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_cubic_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (srcWhole.data == src.data)
{
TextureAccessor<T> texSrc = texAccessor(src, 0, 0);
CubicFilter< TextureAccessor<T> > filteredSrc(texSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
else
{
TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff);
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd);
CubicFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// ResizeNearestDispatcher
template <typename T> struct ResizeNearestDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
call_resize_nearest_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForNearest
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_nearest_glob(src, dst, fy, fx, stream);
else
{
if (fx > 1 || fy > 1)
call_resize_nearest_glob(src, dst, fy, fx, 0);
else
call_resize_nearest_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
}
};
template <> struct ResizeNearestDispatcher<uchar> : SelectImplForNearest<uchar> {};
template <> struct ResizeNearestDispatcher<uchar4> : SelectImplForNearest<uchar4> {};
template <> struct ResizeNearestDispatcher<ushort> : SelectImplForNearest<ushort> {};
template <> struct ResizeNearestDispatcher<ushort4> : SelectImplForNearest<ushort4> {};
template <> struct ResizeNearestDispatcher<short> : SelectImplForNearest<short> {};
template <> struct ResizeNearestDispatcher<short4> : SelectImplForNearest<short4> {};
template <> struct ResizeNearestDispatcher<float> : SelectImplForNearest<float> {};
template <> struct ResizeNearestDispatcher<float4> : SelectImplForNearest<float4> {};
// ResizeLinearDispatcher
template <typename T> struct ResizeLinearDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
call_resize_linear_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForLinear
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_linear_glob(src, dst, fy, fx, stream);
else
{
if (fx > 1 || fy > 1)
call_resize_linear_glob(src, dst, fy, fx, 0);
else
call_resize_linear_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
}
};
template <> struct ResizeLinearDispatcher<uchar> : SelectImplForLinear<uchar> {};
template <> struct ResizeLinearDispatcher<uchar4> : SelectImplForLinear<uchar4> {};
template <> struct ResizeLinearDispatcher<ushort> : SelectImplForLinear<ushort> {};
template <> struct ResizeLinearDispatcher<ushort4> : SelectImplForLinear<ushort4> {};
template <> struct ResizeLinearDispatcher<short> : SelectImplForLinear<short> {};
template <> struct ResizeLinearDispatcher<short4> : SelectImplForLinear<short4> {};
template <> struct ResizeLinearDispatcher<float> : SelectImplForLinear<float> {};
template <> struct ResizeLinearDispatcher<float4> : SelectImplForLinear<float4> {};
// ResizeCubicDispatcher
template <typename T> struct ResizeCubicDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
call_resize_cubic_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForCubic
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_cubic_glob(src, dst, fy, fx, stream);
else
call_resize_cubic_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
};
template <> struct ResizeCubicDispatcher<uchar> : SelectImplForCubic<uchar> {};
template <> struct ResizeCubicDispatcher<uchar4> : SelectImplForCubic<uchar4> {};
template <> struct ResizeCubicDispatcher<ushort> : SelectImplForCubic<ushort> {};
template <> struct ResizeCubicDispatcher<ushort4> : SelectImplForCubic<ushort4> {};
template <> struct ResizeCubicDispatcher<short> : SelectImplForCubic<short> {};
template <> struct ResizeCubicDispatcher<short4> : SelectImplForCubic<short4> {};
template <> struct ResizeCubicDispatcher<float> : SelectImplForCubic<float> {};
template <> struct ResizeCubicDispatcher<float4> : SelectImplForCubic<float4> {};
// ResizeAreaDispatcher
template <typename T> struct ResizeAreaDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>&, int, int, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const int iscale_x = (int) round(fx);
const int iscale_y = (int) round(fy);
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (std::abs(fx - iscale_x) < FLT_MIN && std::abs(fy - iscale_y) < FLT_MIN)
{
BrdConstant<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd);
IntegerAreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy);
resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst);
}
else
{
BrdConstant<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd);
AreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy);
resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst);
}
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
// resize
template <typename T> void resize(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream)
{
typedef void (*func_t)(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream);
static const func_t funcs[4] =
{
ResizeNearestDispatcher<T>::call,
ResizeLinearDispatcher<T>::call,
ResizeCubicDispatcher<T>::call,
ResizeAreaDispatcher<T>::call
};
// change to linear if area interpolation upscaling
if (interpolation == 3 && (fx <= 1.f || fy <= 1.f))
interpolation = 1;
funcs[interpolation](static_cast< PtrStepSz<T> >(src), static_cast< PtrStepSz<T> >(srcWhole), yoff, xoff, static_cast< PtrStepSz<T> >(dst), fy, fx, stream);
}
template void resize<uchar >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<uchar3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<uchar4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
}}}
#endif /* CUDA_DISABLER */