150 lines
4.8 KiB
ReStructuredText
150 lines
4.8 KiB
ReStructuredText
.. _feature_homography:
|
|
|
|
Features2D + Homography to find a known object
|
|
**********************************************
|
|
|
|
Goal
|
|
=====
|
|
|
|
In this tutorial you will learn how to:
|
|
|
|
.. container:: enumeratevisibleitemswithsquare
|
|
|
|
* Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints.
|
|
* Use the function :perspective_transform:`perspectiveTransform<>` to map the points.
|
|
|
|
|
|
Theory
|
|
======
|
|
|
|
Code
|
|
====
|
|
|
|
This tutorial code's is shown lines below.
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/features2d.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/calib3d.hpp"
|
|
#include "opencv2/xfeatures2d.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::xfeatures2d;
|
|
|
|
void readme();
|
|
|
|
/* @function main */
|
|
int main( int argc, char** argv )
|
|
{
|
|
if( argc != 3 )
|
|
{ readme(); return -1; }
|
|
|
|
Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
|
|
Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );
|
|
|
|
if( !img_object.data || !img_scene.data )
|
|
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector
|
|
int minHessian = 400;
|
|
|
|
SurfFeatureDetector detector( minHessian );
|
|
|
|
std::vector<KeyPoint> keypoints_object, keypoints_scene;
|
|
|
|
detector.detect( img_object, keypoints_object );
|
|
detector.detect( img_scene, keypoints_scene );
|
|
|
|
//-- Step 2: Calculate descriptors (feature vectors)
|
|
SurfDescriptorExtractor extractor;
|
|
|
|
Mat descriptors_object, descriptors_scene;
|
|
|
|
extractor.compute( img_object, keypoints_object, descriptors_object );
|
|
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
|
|
|
|
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
|
FlannBasedMatcher matcher;
|
|
std::vector< DMatch > matches;
|
|
matcher.match( descriptors_object, descriptors_scene, matches );
|
|
|
|
double max_dist = 0; double min_dist = 100;
|
|
|
|
//-- Quick calculation of max and min distances between keypoints
|
|
for( int i = 0; i < descriptors_object.rows; i++ )
|
|
{ double dist = matches[i].distance;
|
|
if( dist < min_dist ) min_dist = dist;
|
|
if( dist > max_dist ) max_dist = dist;
|
|
}
|
|
|
|
printf("-- Max dist : %f \n", max_dist );
|
|
printf("-- Min dist : %f \n", min_dist );
|
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
|
|
std::vector< DMatch > good_matches;
|
|
|
|
for( int i = 0; i < descriptors_object.rows; i++ )
|
|
{ if( matches[i].distance < 3*min_dist )
|
|
{ good_matches.push_back( matches[i]); }
|
|
}
|
|
|
|
Mat img_matches;
|
|
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
|
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
|
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
|
|
|
//-- Localize the object
|
|
std::vector<Point2f> obj;
|
|
std::vector<Point2f> scene;
|
|
|
|
for( int i = 0; i < good_matches.size(); i++ )
|
|
{
|
|
//-- Get the keypoints from the good matches
|
|
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
|
|
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
|
|
}
|
|
|
|
Mat H = findHomography( obj, scene, RANSAC );
|
|
|
|
//-- Get the corners from the image_1 ( the object to be "detected" )
|
|
std::vector<Point2f> obj_corners(4);
|
|
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
|
|
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
|
|
std::vector<Point2f> scene_corners(4);
|
|
|
|
perspectiveTransform( obj_corners, scene_corners, H);
|
|
|
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
|
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
|
|
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
|
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
|
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
|
|
|
//-- Show detected matches
|
|
imshow( "Good Matches & Object detection", img_matches );
|
|
|
|
waitKey(0);
|
|
return 0;
|
|
}
|
|
|
|
/* @function readme */
|
|
void readme()
|
|
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|
|
|
|
Explanation
|
|
============
|
|
|
|
Result
|
|
======
|
|
|
|
|
|
#. And here is the result for the detected object (highlighted in green)
|
|
|
|
.. image:: images/Feature_Homography_Result.jpg
|
|
:align: center
|
|
:height: 200pt
|