189 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| The sample demonstrates how to train Random Trees classifier
 | |
| (or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
 | |
| 
 | |
| We use the sample database letter-recognition.data
 | |
| from UCI Repository, here is the link:
 | |
| 
 | |
| Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
 | |
| UCI Repository of machine learning databases
 | |
| [http://www.ics.uci.edu/~mlearn/MLRepository.html].
 | |
| Irvine, CA: University of California, Department of Information and Computer Science.
 | |
| 
 | |
| The dataset consists of 20000 feature vectors along with the
 | |
| responses - capital latin letters A..Z.
 | |
| The first 10000 samples are used for training
 | |
| and the remaining 10000 - to test the classifier.
 | |
| ======================================================
 | |
| USAGE:
 | |
|   letter_recog.py [--model <model>]
 | |
|                   [--data <data fn>]
 | |
|                   [--load <model fn>] [--save <model fn>]
 | |
| 
 | |
|   Models: RTrees, KNearest, Boost, SVM, MLP
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| 
 | |
| def load_base(fn):
 | |
|     a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
 | |
|     samples, responses = a[:,1:], a[:,0]
 | |
|     return samples, responses
 | |
| 
 | |
| class LetterStatModel(object):
 | |
|     class_n = 26
 | |
|     train_ratio = 0.5
 | |
| 
 | |
|     def load(self, fn):
 | |
|         self.model.load(fn)
 | |
|     def save(self, fn):
 | |
|         self.model.save(fn)
 | |
| 
 | |
|     def unroll_samples(self, samples):
 | |
|         sample_n, var_n = samples.shape
 | |
|         new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
 | |
|         new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
 | |
|         new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
 | |
|         return new_samples
 | |
| 
 | |
|     def unroll_responses(self, responses):
 | |
|         sample_n = len(responses)
 | |
|         new_responses = np.zeros(sample_n*self.class_n, np.int32)
 | |
|         resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
 | |
|         new_responses[resp_idx] = 1
 | |
|         return new_responses
 | |
| 
 | |
| class RTrees(LetterStatModel):
 | |
|     def __init__(self):
 | |
|         self.model = cv2.ml.RTrees_create()
 | |
| 
 | |
|     def train(self, samples, responses):
 | |
|         sample_n, var_n = samples.shape
 | |
|         self.model.setMaxDepth(20)
 | |
|         self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
 | |
| 
 | |
|     def predict(self, samples):
 | |
|         ret, resp = self.model.predict(samples)
 | |
|         return resp.ravel()
 | |
| 
 | |
| 
 | |
| class KNearest(LetterStatModel):
 | |
|     def __init__(self):
 | |
|         self.model = cv2.ml.KNearest_create()
 | |
| 
 | |
|     def train(self, samples, responses):
 | |
|         self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
 | |
| 
 | |
|     def predict(self, samples):
 | |
|         retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10)
 | |
|         return results.ravel()
 | |
| 
 | |
| 
 | |
| class Boost(LetterStatModel):
 | |
|     def __init__(self):
 | |
|         self.model = cv2.ml.Boost_create()
 | |
| 
 | |
|     def train(self, samples, responses):
 | |
|         sample_n, var_n = samples.shape
 | |
|         new_samples = self.unroll_samples(samples)
 | |
|         new_responses = self.unroll_responses(responses)
 | |
|         var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
 | |
| 
 | |
|         self.model.setWeakCount(15)
 | |
|         self.model.setMaxDepth(10)
 | |
|         self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
 | |
| 
 | |
|     def predict(self, samples):
 | |
|         new_samples = self.unroll_samples(samples)
 | |
|         ret, resp = self.model.predict(new_samples)
 | |
| 
 | |
|         return resp.ravel().reshape(-1, self.class_n).argmax(1)
 | |
| 
 | |
| 
 | |
| class SVM(LetterStatModel):
 | |
|     def __init__(self):
 | |
|         self.model = cv2.ml.SVM_create()
 | |
| 
 | |
|     def train(self, samples, responses):
 | |
|         self.model.setType(cv2.ml.SVM_C_SVC)
 | |
|         self.model.setC(1)
 | |
|         self.model.setKernel(cv2.ml.SVM_RBF)
 | |
|         self.model.setGamma(.1)
 | |
|         self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
 | |
| 
 | |
|     def predict(self, samples):
 | |
|         ret, resp = self.model.predict(samples)
 | |
|         return resp.ravel()
 | |
| 
 | |
| 
 | |
| class MLP(LetterStatModel):
 | |
|     def __init__(self):
 | |
|         self.model = cv2.ml.ANN_MLP_create()
 | |
| 
 | |
|     def train(self, samples, responses):
 | |
|         sample_n, var_n = samples.shape
 | |
|         new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
 | |
|         layer_sizes = np.int32([var_n, 100, 100, self.class_n])
 | |
| 
 | |
|         self.model.setLayerSizes(layer_sizes)
 | |
|         self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
 | |
|         self.model.setBackpropMomentumScale(0.0)
 | |
|         self.model.setBackpropWeightScale(0.001)
 | |
|         self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
 | |
|         self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
 | |
| 
 | |
|         self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
 | |
| 
 | |
|     def predict(self, samples):
 | |
|         ret, resp = self.model.predict(samples)
 | |
|         return resp.argmax(-1)
 | |
| 
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     import getopt
 | |
|     import sys
 | |
| 
 | |
|     print(__doc__)
 | |
| 
 | |
|     models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
 | |
|     models = dict( [(cls.__name__.lower(), cls) for cls in models] )
 | |
| 
 | |
| 
 | |
|     args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
 | |
|     args = dict(args)
 | |
|     args.setdefault('--model', 'svm')
 | |
|     args.setdefault('--data', '../data/letter-recognition.data')
 | |
| 
 | |
|     print('loading data %s ...' % args['--data'])
 | |
|     samples, responses = load_base(args['--data'])
 | |
|     Model = models[args['--model']]
 | |
|     model = Model()
 | |
| 
 | |
|     train_n = int(len(samples)*model.train_ratio)
 | |
|     if '--load' in args:
 | |
|         fn = args['--load']
 | |
|         print('loading model from %s ...' % fn)
 | |
|         model.load(fn)
 | |
|     else:
 | |
|         print('training %s ...' % Model.__name__)
 | |
|         model.train(samples[:train_n], responses[:train_n])
 | |
| 
 | |
|     print('testing...')
 | |
|     train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n].astype(int))
 | |
|     test_rate  = np.mean(model.predict(samples[train_n:]) == responses[train_n:].astype(int))
 | |
| 
 | |
|     print('train rate: %f  test rate: %f' % (train_rate*100, test_rate*100))
 | |
| 
 | |
|     if '--save' in args:
 | |
|         fn = args['--save']
 | |
|         print('saving model to %s ...' % fn)
 | |
|         model.save(fn)
 | |
|     cv2.destroyAllWindows()
 | 
