767 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			767 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // Primary authors:
 | |
| //     Florian Kainz <kainz@ilm.com>
 | |
| //     Rod Bogart <rgb@ilm.com>
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| //
 | |
| //	half -- a 16-bit floating point number class:
 | |
| //
 | |
| //	Type half can represent positive and negative numbers whose
 | |
| //	magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
 | |
| //	error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
 | |
| //	with an absolute error of 6.0e-8.  All integers from -2048 to
 | |
| //	+2048 can be represented exactly.
 | |
| //
 | |
| //	Type half behaves (almost) like the built-in C++ floating point
 | |
| //	types.  In arithmetic expressions, half, float and double can be
 | |
| //	mixed freely.  Here are a few examples:
 | |
| //
 | |
| //	    half a (3.5);
 | |
| //	    float b (a + sqrt (a));
 | |
| //	    a += b;
 | |
| //	    b += a;
 | |
| //	    b = a + 7;
 | |
| //
 | |
| //	Conversions from half to float are lossless; all half numbers
 | |
| //	are exactly representable as floats.
 | |
| //
 | |
| //	Conversions from float to half may not preserve a float's value
 | |
| //	exactly.  If a float is not representable as a half, then the
 | |
| //	float value is rounded to the nearest representable half.  If a
 | |
| //	float value is exactly in the middle between the two closest
 | |
| //	representable half values, then the float value is rounded to
 | |
| //	the closest half whose least significant bit is zero.
 | |
| //
 | |
| //	Overflows during float-to-half conversions cause arithmetic
 | |
| //	exceptions.  An overflow occurs when the float value to be
 | |
| //	converted is too large to be represented as a half, or if the
 | |
| //	float value is an infinity or a NAN.
 | |
| //
 | |
| //	The implementation of type half makes the following assumptions
 | |
| //	about the implementation of the built-in C++ types:
 | |
| //
 | |
| //	    float is an IEEE 754 single-precision number
 | |
| //	    sizeof (float) == 4
 | |
| //	    sizeof (unsigned int) == sizeof (float)
 | |
| //	    alignof (unsigned int) == alignof (float)
 | |
| //	    sizeof (unsigned short) == 2
 | |
| //
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| #ifndef _HALF_H_
 | |
| #define _HALF_H_
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #if defined(OPENEXR_DLL)
 | |
|     #if defined(HALF_EXPORTS)
 | |
|     #define HALF_EXPORT __declspec(dllexport)
 | |
|     #else
 | |
|     #define HALF_EXPORT __declspec(dllimport)
 | |
|     #endif
 | |
|     #define HALF_EXPORT_CONST
 | |
| #else
 | |
|     #define HALF_EXPORT
 | |
|     #define HALF_EXPORT_CONST const
 | |
| #endif
 | |
| 
 | |
| class HALF_EXPORT half
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     half ();			// no initialization
 | |
|     half (float f);
 | |
| 
 | |
| 
 | |
|     //--------------------
 | |
|     // Conversion to float
 | |
|     //--------------------
 | |
| 
 | |
|     operator		float () const;
 | |
| 
 | |
| 
 | |
|     //------------
 | |
|     // Unary minus
 | |
|     //------------
 | |
| 
 | |
|     half		operator - () const;
 | |
| 
 | |
| 
 | |
|     //-----------
 | |
|     // Assignment
 | |
|     //-----------
 | |
| 
 | |
|     half &		operator = (half  h);
 | |
|     half &		operator = (float f);
 | |
| 
 | |
|     half &		operator += (half  h);
 | |
|     half &		operator += (float f);
 | |
| 
 | |
|     half &		operator -= (half  h);
 | |
|     half &		operator -= (float f);
 | |
| 
 | |
|     half &		operator *= (half  h);
 | |
|     half &		operator *= (float f);
 | |
| 
 | |
|     half &		operator /= (half  h);
 | |
|     half &		operator /= (float f);
 | |
| 
 | |
| 
 | |
|     //---------------------------------------------------------
 | |
|     // Round to n-bit precision (n should be between 0 and 10).
 | |
|     // After rounding, the significand's 10-n least significant
 | |
|     // bits will be zero.
 | |
|     //---------------------------------------------------------
 | |
| 
 | |
|     half		round (unsigned int n) const;
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------------------
 | |
|     // Classification:
 | |
|     //
 | |
|     //	h.isFinite()		returns true if h is a normalized number,
 | |
|     //				a denormalized number or zero
 | |
|     //
 | |
|     //	h.isNormalized()	returns true if h is a normalized number
 | |
|     //
 | |
|     //	h.isDenormalized()	returns true if h is a denormalized number
 | |
|     //
 | |
|     //	h.isZero()		returns true if h is zero
 | |
|     //
 | |
|     //	h.isNan()		returns true if h is a NAN
 | |
|     //
 | |
|     //	h.isInfinity()		returns true if h is a positive
 | |
|     //				or a negative infinity
 | |
|     //
 | |
|     //	h.isNegative()		returns true if the sign bit of h
 | |
|     //				is set (negative)
 | |
|     //--------------------------------------------------------------------
 | |
| 
 | |
|     bool		isFinite () const;
 | |
|     bool		isNormalized () const;
 | |
|     bool		isDenormalized () const;
 | |
|     bool		isZero () const;
 | |
|     bool		isNan () const;
 | |
|     bool		isInfinity () const;
 | |
|     bool		isNegative () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------
 | |
|     // Special values
 | |
|     //
 | |
|     //	posInf()	returns +infinity
 | |
|     //
 | |
|     //	negInf()	returns -infinity
 | |
|     //
 | |
|     //	qNan()		returns a NAN with the bit
 | |
|     //			pattern 0111111111111111
 | |
|     //
 | |
|     //	sNan()		returns a NAN with the bit
 | |
|     //			pattern 0111110111111111
 | |
|     //--------------------------------------------
 | |
| 
 | |
|     static half		posInf ();
 | |
|     static half		negInf ();
 | |
|     static half		qNan ();
 | |
|     static half		sNan ();
 | |
| 
 | |
| 
 | |
|     //--------------------------------------
 | |
|     // Access to the internal representation
 | |
|     //--------------------------------------
 | |
| 
 | |
|     unsigned short	bits () const;
 | |
|     void		setBits (unsigned short bits);
 | |
| 
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     union uif
 | |
|     {
 | |
|     unsigned int	i;
 | |
|     float		f;
 | |
|     };
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     static short	convert (int i);
 | |
|     static float	overflow ();
 | |
| 
 | |
|     unsigned short	_h;
 | |
| 
 | |
|     static HALF_EXPORT_CONST uif		_toFloat[1 << 16];
 | |
|     static HALF_EXPORT_CONST unsigned short _eLut[1 << 9];
 | |
| };
 | |
| 
 | |
| //-----------
 | |
| // Stream I/O
 | |
| //-----------
 | |
| 
 | |
| HALF_EXPORT std::ostream &		operator << (std::ostream &os, half  h);
 | |
| HALF_EXPORT std::istream &		operator >> (std::istream &is, half &h);
 | |
| 
 | |
| 
 | |
| //----------
 | |
| // Debugging
 | |
| //----------
 | |
| 
 | |
| HALF_EXPORT void			printBits   (std::ostream &os, half  h);
 | |
| HALF_EXPORT void			printBits   (std::ostream &os, float f);
 | |
| HALF_EXPORT void			printBits   (char  c[19], half  h);
 | |
| HALF_EXPORT void			printBits   (char  c[35], float f);
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------
 | |
| // Limits
 | |
| //
 | |
| // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
 | |
| // constants, but at least one other compiler (gcc 2.96) produces incorrect
 | |
| // results if they are.
 | |
| //-------------------------------------------------------------------------
 | |
| 
 | |
| #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
 | |
| 
 | |
|   #define HALF_MIN	5.96046448e-08f	// Smallest positive half
 | |
| 
 | |
|   #define HALF_NRM_MIN	6.10351562e-05f	// Smallest positive normalized half
 | |
| 
 | |
|   #define HALF_MAX	65504.0f	// Largest positive half
 | |
| 
 | |
|   #define HALF_EPSILON	0.00097656f	// Smallest positive e for which
 | |
|                     // half (1.0 + e) != half (1.0)
 | |
| #else
 | |
| 
 | |
|   #define HALF_MIN	5.96046448e-08	// Smallest positive half
 | |
| 
 | |
|   #define HALF_NRM_MIN	6.10351562e-05	// Smallest positive normalized half
 | |
| 
 | |
|   #define HALF_MAX	65504.0		// Largest positive half
 | |
| 
 | |
|   #define HALF_EPSILON	0.00097656	// Smallest positive e for which
 | |
|                     // half (1.0 + e) != half (1.0)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define HALF_MANT_DIG	11		// Number of digits in mantissa
 | |
|                     // (significand + hidden leading 1)
 | |
| 
 | |
| #define HALF_DIG	2		// Number of base 10 digits that
 | |
|                     // can be represented without change
 | |
| 
 | |
| #define HALF_RADIX	2		// Base of the exponent
 | |
| 
 | |
| #define HALF_MIN_EXP	-13		// Minimum negative integer such that
 | |
|                     // HALF_RADIX raised to the power of
 | |
|                     // one less than that integer is a
 | |
|                     // normalized half
 | |
| 
 | |
| #define HALF_MAX_EXP	16		// Maximum positive integer such that
 | |
|                     // HALF_RADIX raised to the power of
 | |
|                     // one less than that integer is a
 | |
|                     // normalized half
 | |
| 
 | |
| #define HALF_MIN_10_EXP	-4		// Minimum positive integer such
 | |
|                     // that 10 raised to that power is
 | |
|                     // a normalized half
 | |
| 
 | |
| #define HALF_MAX_10_EXP	4		// Maximum positive integer such
 | |
|                     // that 10 raised to that power is
 | |
|                     // a normalized half
 | |
| 
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| //
 | |
| // Implementation --
 | |
| //
 | |
| // Representation of a float:
 | |
| //
 | |
| //	We assume that a float, f, is an IEEE 754 single-precision
 | |
| //	floating point number, whose bits are arranged as follows:
 | |
| //
 | |
| //	    31 (msb)
 | |
| //	    |
 | |
| //	    | 30     23
 | |
| //	    | |      |
 | |
| //	    | |      | 22                    0 (lsb)
 | |
| //	    | |      | |                     |
 | |
| //	    X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
 | |
| //
 | |
| //	    s e        m
 | |
| //
 | |
| //	S is the sign-bit, e is the exponent and m is the significand.
 | |
| //
 | |
| //	If e is between 1 and 254, f is a normalized number:
 | |
| //
 | |
| //	            s    e-127
 | |
| //	    f = (-1)  * 2      * 1.m
 | |
| //
 | |
| //	If e is 0, and m is not zero, f is a denormalized number:
 | |
| //
 | |
| //	            s    -126
 | |
| //	    f = (-1)  * 2      * 0.m
 | |
| //
 | |
| //	If e and m are both zero, f is zero:
 | |
| //
 | |
| //	    f = 0.0
 | |
| //
 | |
| //	If e is 255, f is an "infinity" or "not a number" (NAN),
 | |
| //	depending on whether m is zero or not.
 | |
| //
 | |
| //	Examples:
 | |
| //
 | |
| //	    0 00000000 00000000000000000000000 = 0.0
 | |
| //	    0 01111110 00000000000000000000000 = 0.5
 | |
| //	    0 01111111 00000000000000000000000 = 1.0
 | |
| //	    0 10000000 00000000000000000000000 = 2.0
 | |
| //	    0 10000000 10000000000000000000000 = 3.0
 | |
| //	    1 10000101 11110000010000000000000 = -124.0625
 | |
| //	    0 11111111 00000000000000000000000 = +infinity
 | |
| //	    1 11111111 00000000000000000000000 = -infinity
 | |
| //	    0 11111111 10000000000000000000000 = NAN
 | |
| //	    1 11111111 11111111111111111111111 = NAN
 | |
| //
 | |
| // Representation of a half:
 | |
| //
 | |
| //	Here is the bit-layout for a half number, h:
 | |
| //
 | |
| //	    15 (msb)
 | |
| //	    |
 | |
| //	    | 14  10
 | |
| //	    | |   |
 | |
| //	    | |   | 9        0 (lsb)
 | |
| //	    | |   | |        |
 | |
| //	    X XXXXX XXXXXXXXXX
 | |
| //
 | |
| //	    s e     m
 | |
| //
 | |
| //	S is the sign-bit, e is the exponent and m is the significand.
 | |
| //
 | |
| //	If e is between 1 and 30, h is a normalized number:
 | |
| //
 | |
| //	            s    e-15
 | |
| //	    h = (-1)  * 2     * 1.m
 | |
| //
 | |
| //	If e is 0, and m is not zero, h is a denormalized number:
 | |
| //
 | |
| //	            S    -14
 | |
| //	    h = (-1)  * 2     * 0.m
 | |
| //
 | |
| //	If e and m are both zero, h is zero:
 | |
| //
 | |
| //	    h = 0.0
 | |
| //
 | |
| //	If e is 31, h is an "infinity" or "not a number" (NAN),
 | |
| //	depending on whether m is zero or not.
 | |
| //
 | |
| //	Examples:
 | |
| //
 | |
| //	    0 00000 0000000000 = 0.0
 | |
| //	    0 01110 0000000000 = 0.5
 | |
| //	    0 01111 0000000000 = 1.0
 | |
| //	    0 10000 0000000000 = 2.0
 | |
| //	    0 10000 1000000000 = 3.0
 | |
| //	    1 10101 1111000001 = -124.0625
 | |
| //	    0 11111 0000000000 = +infinity
 | |
| //	    1 11111 0000000000 = -infinity
 | |
| //	    0 11111 1000000000 = NAN
 | |
| //	    1 11111 1111111111 = NAN
 | |
| //
 | |
| // Conversion:
 | |
| //
 | |
| //	Converting from a float to a half requires some non-trivial bit
 | |
| //	manipulations.  In some cases, this makes conversion relatively
 | |
| //	slow, but the most common case is accelerated via table lookups.
 | |
| //
 | |
| //	Converting back from a half to a float is easier because we don't
 | |
| //	have to do any rounding.  In addition, there are only 65536
 | |
| //	different half numbers; we can convert each of those numbers once
 | |
| //	and store the results in a table.  Later, all conversions can be
 | |
| //	done using only simple table lookups.
 | |
| //
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| //--------------------
 | |
| // Simple constructors
 | |
| //--------------------
 | |
| 
 | |
| inline
 | |
| half::half ()
 | |
| {
 | |
|     // no initialization
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------
 | |
| // Half-from-float constructor
 | |
| //----------------------------
 | |
| 
 | |
| inline
 | |
| half::half (float f)
 | |
| {
 | |
|     uif x;
 | |
| 
 | |
|     x.f = f;
 | |
| 
 | |
|     if (f == 0)
 | |
|     {
 | |
|     //
 | |
|     // Common special case - zero.
 | |
|     // Preserve the zero's sign bit.
 | |
|     //
 | |
| 
 | |
|     _h = (x.i >> 16);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     //
 | |
|     // We extract the combined sign and exponent, e, from our
 | |
|     // floating-point number, f.  Then we convert e to the sign
 | |
|     // and exponent of the half number via a table lookup.
 | |
|     //
 | |
|     // For the most common case, where a normalized half is produced,
 | |
|     // the table lookup returns a non-zero value; in this case, all
 | |
|     // we have to do is round f's significand to 10 bits and combine
 | |
|     // the result with e.
 | |
|     //
 | |
|     // For all other cases (overflow, zeroes, denormalized numbers
 | |
|     // resulting from underflow, infinities and NANs), the table
 | |
|     // lookup returns zero, and we call a longer, non-inline function
 | |
|     // to do the float-to-half conversion.
 | |
|     //
 | |
| 
 | |
|     register int e = (x.i >> 23) & 0x000001ff;
 | |
| 
 | |
|     e = _eLut[e];
 | |
| 
 | |
|     if (e)
 | |
|     {
 | |
|         //
 | |
|         // Simple case - round the significand, m, to 10
 | |
|         // bits and combine it with the sign and exponent.
 | |
|         //
 | |
| 
 | |
|         register int m = x.i & 0x007fffff;
 | |
|         _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         //
 | |
|         // Difficult case - call a function.
 | |
|         //
 | |
| 
 | |
|         _h = convert (x.i);
 | |
|     }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------
 | |
| // Half-to-float conversion via table lookup
 | |
| //------------------------------------------
 | |
| 
 | |
| inline
 | |
| half::operator float () const
 | |
| {
 | |
|     return _toFloat[_h].f;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------
 | |
| // Round to n-bit precision
 | |
| //-------------------------
 | |
| 
 | |
| inline half
 | |
| half::round (unsigned int n) const
 | |
| {
 | |
|     //
 | |
|     // Parameter check.
 | |
|     //
 | |
| 
 | |
|     if (n >= 10)
 | |
|     return *this;
 | |
| 
 | |
|     //
 | |
|     // Disassemble h into the sign, s,
 | |
|     // and the combined exponent and significand, e.
 | |
|     //
 | |
| 
 | |
|     unsigned short s = _h & 0x8000;
 | |
|     unsigned short e = _h & 0x7fff;
 | |
| 
 | |
|     //
 | |
|     // Round the exponent and significand to the nearest value
 | |
|     // where ones occur only in the (10-n) most significant bits.
 | |
|     // Note that the exponent adjusts automatically if rounding
 | |
|     // up causes the significand to overflow.
 | |
|     //
 | |
| 
 | |
|     e >>= 9 - n;
 | |
|     e  += e & 1;
 | |
|     e <<= 9 - n;
 | |
| 
 | |
|     //
 | |
|     // Check for exponent overflow.
 | |
|     //
 | |
| 
 | |
|     if (e >= 0x7c00)
 | |
|     {
 | |
|     //
 | |
|     // Overflow occurred -- truncate instead of rounding.
 | |
|     //
 | |
| 
 | |
|     e = _h;
 | |
|     e >>= 10 - n;
 | |
|     e <<= 10 - n;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Put the original sign bit back.
 | |
|     //
 | |
| 
 | |
|     half h;
 | |
|     h._h = s | e;
 | |
| 
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------
 | |
| // Other inline functions
 | |
| //-----------------------
 | |
| 
 | |
| inline half
 | |
| half::operator - () const
 | |
| {
 | |
|     half h;
 | |
|     h._h = _h ^ 0x8000;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator = (half h)
 | |
| {
 | |
|     _h = h._h;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator = (float f)
 | |
| {
 | |
|     *this = half (f);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator += (half h)
 | |
| {
 | |
|     *this = half (float (*this) + float (h));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator += (float f)
 | |
| {
 | |
|     *this = half (float (*this) + f);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator -= (half h)
 | |
| {
 | |
|     *this = half (float (*this) - float (h));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator -= (float f)
 | |
| {
 | |
|     *this = half (float (*this) - f);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator *= (half h)
 | |
| {
 | |
|     *this = half (float (*this) * float (h));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator *= (float f)
 | |
| {
 | |
|     *this = half (float (*this) * f);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator /= (half h)
 | |
| {
 | |
|     *this = half (float (*this) / float (h));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half &
 | |
| half::operator /= (float f)
 | |
| {
 | |
|     *this = half (float (*this) / f);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isFinite () const
 | |
| {
 | |
|     unsigned short e = (_h >> 10) & 0x001f;
 | |
|     return e < 31;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isNormalized () const
 | |
| {
 | |
|     unsigned short e = (_h >> 10) & 0x001f;
 | |
|     return e > 0 && e < 31;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isDenormalized () const
 | |
| {
 | |
|     unsigned short e = (_h >> 10) & 0x001f;
 | |
|     unsigned short m =  _h & 0x3ff;
 | |
|     return e == 0 && m != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isZero () const
 | |
| {
 | |
|     return (_h & 0x7fff) == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isNan () const
 | |
| {
 | |
|     unsigned short e = (_h >> 10) & 0x001f;
 | |
|     unsigned short m =  _h & 0x3ff;
 | |
|     return e == 31 && m != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isInfinity () const
 | |
| {
 | |
|     unsigned short e = (_h >> 10) & 0x001f;
 | |
|     unsigned short m =  _h & 0x3ff;
 | |
|     return e == 31 && m == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool
 | |
| half::isNegative () const
 | |
| {
 | |
|     return (_h & 0x8000) != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half
 | |
| half::posInf ()
 | |
| {
 | |
|     half h;
 | |
|     h._h = 0x7c00;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half
 | |
| half::negInf ()
 | |
| {
 | |
|     half h;
 | |
|     h._h = 0xfc00;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half
 | |
| half::qNan ()
 | |
| {
 | |
|     half h;
 | |
|     h._h = 0x7fff;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline half
 | |
| half::sNan ()
 | |
| {
 | |
|     half h;
 | |
|     h._h = 0x7dff;
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline unsigned short
 | |
| half::bits () const
 | |
| {
 | |
|     return _h;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline void
 | |
| half::setBits (unsigned short bits)
 | |
| {
 | |
|     _h = bits;
 | |
| }
 | |
| 
 | |
| #endif
 | 
