opencv/modules/gpu/src/cuda/icf-sc.cu
marina.kolpakova d2e88e1d4d nms: part 1
2012-11-26 15:26:11 +04:00

360 lines
13 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/gpu/device/common.hpp>
#include <icf.hpp>
#include <float.h>
#include <stdio.h>
namespace cv { namespace gpu { namespace device {
namespace icf {
// ToDo: use textures or ancached load instruction.
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch, const int fh)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int bin = (int)(angle[y * angPitch + x]);
const uchar val = mag[y * hogPitch + x];
hog[((fh * bin) + y) * hogPitch + x] = val;
}
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream )
{
const uchar* mag = (const uchar*)hogluv.ptr(fh * bins);
uchar* hog = (uchar*)hogluv.ptr();
const float* angle = (const float*)nangle.ptr();
dim3 block(32, 8);
dim3 grid(fw / 32, fh / 8);
magToHist<<<grid, block, 0, stream>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step, fh);
if (!stream)
{
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
__device__ __forceinline__ float overlapArea(const Detection &a, const Detection &b)
{
int w = ::min(a.x + a.w, b.x + b.w) - ::max(a.x, b.x);
int h = ::min(a.y + a.h, b.y + b.h) - ::max(a.y, b.y);
return (w < 0 || h < 0)? 0.f : (float)(w * h);
}
__global__ void overlap(const uint* n, const Detection* detections, uchar* overlaps)
{
const int idx = threadIdx.x;
const int total = *n;
for (int i = idx; i < total; i += 192)
{
const Detection& a = detections[i];
bool excluded = false;
for (int j = i + 1; j < total; ++j)
{
const Detection& b = detections[j];
float ovl = overlapArea(a, b) / ::min(a.w * a.h, b.w * b.h);
if (ovl > 0.65f)
{
int suppessed = (a.confidence > b.confidence)? j : i;
overlaps[suppessed] = 1;
excluded = excluded || (suppessed == i);
}
if (__all(excluded)) break;
}
}
}
__global__ void collect(const uint* n, const Detection* detections, uchar* overlaps)
{
const int idx = threadIdx.x;
const int total = *n;
for (int i = idx; i < total; i += 192)
{
if (!overlaps[i])
{
const Detection& det = detections[i];
// printf("%d: %d %d %d %d %f\n", i, det.x, det.y, det.w, det.h, det.confidence );
}
}
}
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections)
{
int block = 192;
int grid = 1;
overlap<<<grid, block>>>((uint*)ndetections.ptr(0), (Detection*)objects.ptr(0), (uchar*)overlaps.ptr(0));
collect<<<grid, block>>>((uint*)ndetections.ptr(0), (Detection*)objects.ptr(0), (uchar*)overlaps.ptr(0));
// if (!stream)
{
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());
}
}
template<typename Policy>
struct PrefixSum
{
__device static void apply(float& impact)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
#pragma unroll
// scan on shuffl functions
for (int i = 1; i < Policy::WARP; i *= 2)
{
const float n = __shfl_up(impact, i, Policy::WARP);
if (threadIdx.x >= i)
impact += n;
}
#else
__shared__ volatile float ptr[Policy::STA_X * Policy::STA_Y];
const int idx = threadIdx.y * Policy::STA_X + threadIdx.x;
ptr[idx] = impact;
if ( threadIdx.x >= 1) ptr [idx ] = (ptr [idx - 1] + ptr [idx]);
if ( threadIdx.x >= 2) ptr [idx ] = (ptr [idx - 2] + ptr [idx]);
if ( threadIdx.x >= 4) ptr [idx ] = (ptr [idx - 4] + ptr [idx]);
if ( threadIdx.x >= 8) ptr [idx ] = (ptr [idx - 8] + ptr [idx]);
if ( threadIdx.x >= 16) ptr [idx ] = (ptr [idx - 16] + ptr [idx]);
impact = ptr[idx];
#endif
}
};
texture<int, cudaTextureType2D, cudaReadModeElementType> thogluv;
template<bool isUp>
__device__ __forceinline__ float rescale(const Level& level, Node& node)
{
uchar4& scaledRect = node.rect;
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
const float expected_new_area = farea * relScale * relScale;
float approx = (sarea == 0)? 1: __fdividef(sarea, expected_new_area);
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];
return rootThreshold;
}
template<>
__device__ __forceinline__ float rescale<true>(const Level& level, Node& node)
{
uchar4& scaledRect = node.rect;
float relScale = level.relScale;
float farea = scaledRect.z * scaledRect.w;
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = scaledRect.z * scaledRect.w;
const float expected_new_area = farea * relScale * relScale;
float approx = __fdividef(sarea, expected_new_area);
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];
return rootThreshold;
}
template<bool isUp>
__device__ __forceinline__ int get(int x, int y, uchar4 area)
{
int a = tex2D(thogluv, x + area.x, y + area.y);
int b = tex2D(thogluv, x + area.z, y + area.y);
int c = tex2D(thogluv, x + area.z, y + area.w);
int d = tex2D(thogluv, x + area.x, y + area.w);
return (a - b + c - d);
}
template<>
__device__ __forceinline__ int get<true>(int x, int y, uchar4 area)
{
x += area.x;
y += area.y;
int a = tex2D(thogluv, x, y);
int b = tex2D(thogluv, x + area.z, y);
int c = tex2D(thogluv, x + area.z, y + area.w);
int d = tex2D(thogluv, x, y + area.w);
return (a - b + c - d);
}
texture<float2, cudaTextureType2D, cudaReadModeElementType> troi;
template<typename Policy>
template<bool isUp>
__device void CascadeInvoker<Policy>::detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x;
// load Lavel
__shared__ Level level;
// check POI
__shared__ volatile char roiCache[Policy::STA_Y];
if (!threadIdx.y && !threadIdx.x)
((float2*)roiCache)[threadIdx.x] = tex2D(troi, blockIdx.y, x);
__syncthreads();
if (!roiCache[threadIdx.y]) return;
if (!threadIdx.x)
level = levels[downscales + blockIdx.z];
if(x >= level.workRect.x || y >= level.workRect.y) return;
int st = level.octave * level.step;
const int stEnd = st + level.step;
const int hogluvStep = gridDim.y * Policy::STA_Y;
float confidence = 0.f;
for(; st < stEnd; st += Policy::WARP)
{
const int nId = (st + threadIdx.x) * 3;
Node node = nodes[nId];
float threshold = rescale<isUp>(level, node);
int sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);
int next = 1 + (int)(sum >= threshold);
node = nodes[nId + next];
threshold = rescale<isUp>(level, node);
sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves[(st + threadIdx.x) * 4 + lShift];
PrefixSum<Policy>::apply(impact);
confidence += impact;
if(__any((confidence <= stages[(st + threadIdx.x)]))) st += 2048;
}
if(!threadIdx.x && st == stEnd && ((confidence - FLT_EPSILON) >= 0))
{
int idx = atomicInc(ctr, ndetections);
objects[idx] = Detection(__float2int_rn(x * Policy::SHRINKAGE),
__float2int_rn(y * Policy::SHRINKAGE), level.objSize.x, level.objSize.y, confidence);
}
}
template<typename Policy, bool isUp>
__global__ void soft_cascade(const CascadeInvoker<Policy> invoker, Detection* objects, const uint n, uint* ctr, const int downs)
{
invoker.template detect<isUp>(objects, n, ctr, downs);
}
template<typename Policy>
void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const cudaStream_t& stream) const
{
int fw = roi.rows;
int fh = roi.cols;
dim3 grid(fw, fh / Policy::STA_Y, downscales);
uint* ctr = (uint*)(counter.ptr(0));
Detection* det = (Detection*)objects.ptr();
uint max_det = objects.cols / sizeof(Detection);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step));
cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<typename Policy::roi_type>();
cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / Policy::STA_Y, roi.rows, roi.step));
const CascadeInvoker<Policy> inv = *this;
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0);
cudaSafeCall( cudaGetLastError());
grid = dim3(fw, fh / Policy::STA_Y, scales - downscales);
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales);
if (!stream)
{
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());
}
}
template void CascadeInvoker<GK107PolicyX4>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const cudaStream_t& stream) const;
}
}}}