2626 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2626 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/opencv_modules.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| #include "opencv2/nonfree/nonfree.hpp"
 | |
| #include "opencv2/ml/ml.hpp"
 | |
| #ifdef HAVE_OPENCV_OCL
 | |
| #define _OCL_SVM_ 1 //select whether using ocl::svm method or not, default is using
 | |
| #include "opencv2/ocl/ocl.hpp"
 | |
| #endif
 | |
| 
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <memory>
 | |
| #include <functional>
 | |
| 
 | |
| #if defined WIN32 || defined _WIN32
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #include <windows.h>
 | |
| #undef min
 | |
| #undef max
 | |
| #include "sys/types.h"
 | |
| #endif
 | |
| #include <sys/stat.h>
 | |
| 
 | |
| #define DEBUG_DESC_PROGRESS
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| const string paramsFile = "params.xml";
 | |
| const string vocabularyFile = "vocabulary.xml.gz";
 | |
| const string bowImageDescriptorsDir = "/bowImageDescriptors";
 | |
| const string svmsDir = "/svms";
 | |
| const string plotsDir = "/plots";
 | |
| 
 | |
| static void help(char** argv)
 | |
| {
 | |
|     cout << "\nThis program shows how to read in, train on and produce test results for the PASCAL VOC (Visual Object Challenge) data. \n"
 | |
|      << "It shows how to use detectors, descriptors and recognition methods \n"
 | |
|         "Using OpenCV version %s\n" << CV_VERSION << "\n"
 | |
|      << "Call: \n"
 | |
|     << "Format:\n ./" << argv[0] << " [VOC path] [result directory]  \n"
 | |
|     << "       or:  \n"
 | |
|     << " ./" << argv[0] << " [VOC path] [result directory] [feature detector] [descriptor extractor] [descriptor matcher] \n"
 | |
|     << "\n"
 | |
|     << "Input parameters: \n"
 | |
|     << "[VOC path]             Path to Pascal VOC data (e.g. /home/my/VOCdevkit/VOC2010). Note: VOC2007-VOC2010 are supported. \n"
 | |
|     << "[result directory]     Path to result diractory. Following folders will be created in [result directory]: \n"
 | |
|     << "                         bowImageDescriptors - to store image descriptors, \n"
 | |
|     << "                         svms - to store trained svms, \n"
 | |
|     << "                         plots - to store files for plots creating. \n"
 | |
|     << "[feature detector]     Feature detector name (e.g. SURF, FAST...) - see createFeatureDetector() function in detectors.cpp \n"
 | |
|     << "                         Currently 12/2010, this is FAST, STAR, SIFT, SURF, MSER, GFTT, HARRIS \n"
 | |
|     << "[descriptor extractor] Descriptor extractor name (e.g. SURF, SIFT) - see createDescriptorExtractor() function in descriptors.cpp \n"
 | |
|     << "                         Currently 12/2010, this is SURF, OpponentSIFT, SIFT, OpponentSURF, BRIEF \n"
 | |
|     << "[descriptor matcher]   Descriptor matcher name (e.g. BruteForce) - see createDescriptorMatcher() function in matchers.cpp \n"
 | |
|     << "                         Currently 12/2010, this is BruteForce, BruteForce-L1, FlannBased, BruteForce-Hamming, BruteForce-HammingLUT \n"
 | |
|     << "\n";
 | |
| }
 | |
| 
 | |
| static void makeDir( const string& dir )
 | |
| {
 | |
| #if defined WIN32 || defined _WIN32
 | |
|     CreateDirectory( dir.c_str(), 0 );
 | |
| #else
 | |
|     mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void makeUsedDirs( const string& rootPath )
 | |
| {
 | |
|     makeDir(rootPath + bowImageDescriptorsDir);
 | |
|     makeDir(rootPath + svmsDir);
 | |
|     makeDir(rootPath + plotsDir);
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                    Classes to work with PASCAL VOC dataset                             *
 | |
| \****************************************************************************************/
 | |
| //
 | |
| // TODO: refactor this part of the code
 | |
| //
 | |
| 
 | |
| 
 | |
| //used to specify the (sub-)dataset over which operations are performed
 | |
| enum ObdDatasetType {CV_OBD_TRAIN, CV_OBD_TEST};
 | |
| 
 | |
| class ObdObject
 | |
| {
 | |
| public:
 | |
|     string object_class;
 | |
|     Rect boundingBox;
 | |
| };
 | |
| 
 | |
| //extended object data specific to VOC
 | |
| enum VocPose {CV_VOC_POSE_UNSPECIFIED, CV_VOC_POSE_FRONTAL, CV_VOC_POSE_REAR, CV_VOC_POSE_LEFT, CV_VOC_POSE_RIGHT};
 | |
| class VocObjectData
 | |
| {
 | |
| public:
 | |
|     bool difficult;
 | |
|     bool occluded;
 | |
|     bool truncated;
 | |
|     VocPose pose;
 | |
| };
 | |
| //enum VocDataset {CV_VOC2007, CV_VOC2008, CV_VOC2009, CV_VOC2010};
 | |
| enum VocPlotType {CV_VOC_PLOT_SCREEN, CV_VOC_PLOT_PNG};
 | |
| enum VocGT {CV_VOC_GT_NONE, CV_VOC_GT_DIFFICULT, CV_VOC_GT_PRESENT};
 | |
| enum VocConfCond {CV_VOC_CCOND_RECALL, CV_VOC_CCOND_SCORETHRESH};
 | |
| enum VocTask {CV_VOC_TASK_CLASSIFICATION, CV_VOC_TASK_DETECTION};
 | |
| 
 | |
| class ObdImage
 | |
| {
 | |
| public:
 | |
|     ObdImage(string p_id, string p_path) : id(p_id), path(p_path) {}
 | |
|     string id;
 | |
|     string path;
 | |
| };
 | |
| 
 | |
| //used by getDetectorGroundTruth to sort a two dimensional list of floats in descending order
 | |
| class ObdScoreIndexSorter
 | |
| {
 | |
| public:
 | |
|     float score;
 | |
|     int image_idx;
 | |
|     int obj_idx;
 | |
|     bool operator < (const ObdScoreIndexSorter& compare) const {return (score < compare.score);}
 | |
| };
 | |
| 
 | |
| class VocData
 | |
| {
 | |
| public:
 | |
|     VocData( const string& vocPath, bool useTestDataset )
 | |
|         { initVoc( vocPath, useTestDataset ); }
 | |
|     ~VocData(){}
 | |
|     /* functions for returning classification/object data for multiple images given an object class */
 | |
|     void getClassImages(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present);
 | |
|     void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects);
 | |
|     void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects, vector<vector<VocObjectData> >& object_data, vector<VocGT>& ground_truth);
 | |
|     /* functions for returning object data for a single image given an image id */
 | |
|     ObdImage getObjects(const string& id, vector<ObdObject>& objects);
 | |
|     ObdImage getObjects(const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data);
 | |
|     ObdImage getObjects(const string& obj_class, const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data, VocGT& ground_truth);
 | |
|     /* functions for returning the ground truth (present/absent) for groups of images */
 | |
|     void getClassifierGroundTruth(const string& obj_class, const vector<ObdImage>& images, vector<char>& ground_truth);
 | |
|     void getClassifierGroundTruth(const string& obj_class, const vector<string>& images, vector<char>& ground_truth);
 | |
|     int getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<Rect> >& bounding_boxes, const vector<vector<float> >& scores, vector<vector<char> >& ground_truth, vector<vector<char> >& detection_difficult, bool ignore_difficult = true);
 | |
|     /* functions for writing VOC-compatible results files */
 | |
|     void writeClassifierResultsFile(const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<float>& scores, const int competition = 1, const bool overwrite_ifexists = false);
 | |
|     /* functions for calculating metrics from a set of classification/detection results */
 | |
|     string getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition = -1, const int number = -1);
 | |
|     void calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking);
 | |
|     void calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap);
 | |
|     void calcClassifierPrecRecall(const string& input_file, vector<float>& precision, vector<float>& recall, float& ap, bool outputRankingFile = false);
 | |
|     /* functions for calculating confusion matrices */
 | |
|     void calcClassifierConfMatRow(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values);
 | |
|     void calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<float> >& scores, const vector<vector<Rect> >& bounding_boxes, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values, bool ignore_difficult = true);
 | |
|     /* functions for outputting gnuplot output files */
 | |
|     void savePrecRecallToGnuplot(const string& output_file, const vector<float>& precision, const vector<float>& recall, const float ap, const string title = string(), const VocPlotType plot_type = CV_VOC_PLOT_SCREEN);
 | |
|     /* functions for reading in result/ground truth files */
 | |
|     void readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present);
 | |
|     void readClassifierResultsFile(const std:: string& input_file, vector<ObdImage>& images, vector<float>& scores);
 | |
|     void readDetectorResultsFile(const string& input_file, vector<ObdImage>& images, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes);
 | |
|     /* functions for getting dataset info */
 | |
|     const vector<string>& getObjectClasses();
 | |
|     string getResultsDirectory();
 | |
| protected:
 | |
|     void initVoc( const string& vocPath, const bool useTestDataset );
 | |
|     void initVoc2007to2010( const string& vocPath, const bool useTestDataset);
 | |
|     void readClassifierGroundTruth(const string& filename, vector<string>& image_codes, vector<char>& object_present);
 | |
|     void readClassifierResultsFile(const string& input_file, vector<string>& image_codes, vector<float>& scores);
 | |
|     void readDetectorResultsFile(const string& input_file, vector<string>& image_codes, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes);
 | |
|     void extractVocObjects(const string filename, vector<ObdObject>& objects, vector<VocObjectData>& object_data);
 | |
|     string getImagePath(const string& input_str);
 | |
| 
 | |
|     void getClassImages_impl(const string& obj_class, const string& dataset_str, vector<ObdImage>& images, vector<char>& object_present);
 | |
|     void calcPrecRecall_impl(const vector<char>& ground_truth, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking, int recall_normalization = -1);
 | |
| 
 | |
|     //test two bounding boxes to see if they meet the overlap criteria defined in the VOC documentation
 | |
|     float testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth);
 | |
|     //extract class and dataset name from a VOC-standard classification/detection results filename
 | |
|     void extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name);
 | |
|     //get classifier ground truth for a single image
 | |
|     bool getClassifierGroundTruthImage(const string& obj_class, const string& id);
 | |
| 
 | |
|     //utility functions
 | |
|     void getSortOrder(const vector<float>& values, vector<size_t>& order, bool descending = true);
 | |
|     int stringToInteger(const string input_str);
 | |
|     void readFileToString(const string filename, string& file_contents);
 | |
|     string integerToString(const int input_int);
 | |
|     string checkFilenamePathsep(const string filename, bool add_trailing_slash = false);
 | |
|     void convertImageCodesToObdImages(const vector<string>& image_codes, vector<ObdImage>& images);
 | |
|     int extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents);
 | |
|     //utility sorter
 | |
|     struct orderingSorter
 | |
|     {
 | |
|         bool operator ()(std::pair<size_t, vector<float>::const_iterator> const& a, std::pair<size_t, vector<float>::const_iterator> const& b)
 | |
|         {
 | |
|             return (*a.second) > (*b.second);
 | |
|         }
 | |
|     };
 | |
|     //data members
 | |
|     string m_vocPath;
 | |
|     string m_vocName;
 | |
|     //string m_resPath;
 | |
| 
 | |
|     string m_annotation_path;
 | |
|     string m_image_path;
 | |
|     string m_imageset_path;
 | |
|     string m_class_imageset_path;
 | |
| 
 | |
|     vector<string> m_classifier_gt_all_ids;
 | |
|     vector<char> m_classifier_gt_all_present;
 | |
|     string m_classifier_gt_class;
 | |
| 
 | |
|     //data members
 | |
|     string m_train_set;
 | |
|     string m_test_set;
 | |
| 
 | |
|     vector<string> m_object_classes;
 | |
| 
 | |
| 
 | |
|     float m_min_overlap;
 | |
|     bool m_sampled_ap;
 | |
| };
 | |
| 
 | |
| 
 | |
| //Return the classification ground truth data for all images of a given VOC object class
 | |
| //--------------------------------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - dataset            Specifies whether to extract images from the training or test set
 | |
| //OUTPUTS:
 | |
| // - images             An array of ObdImage containing info of all images extracted from the ground truth file
 | |
| // - object_present     An array of bools specifying whether the object defined by 'obj_class' is present in each image or not
 | |
| //NOTES:
 | |
| // This function is primarily useful for the classification task, where only
 | |
| // whether a given object is present or not in an image is required, and not each object instance's
 | |
| // position etc.
 | |
| void VocData::getClassImages(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present)
 | |
| {
 | |
|     string dataset_str;
 | |
|     //generate the filename of the classification ground-truth textfile for the object class
 | |
|     if (dataset == CV_OBD_TRAIN)
 | |
|     {
 | |
|         dataset_str = m_train_set;
 | |
|     } else {
 | |
|         dataset_str = m_test_set;
 | |
|     }
 | |
| 
 | |
|     getClassImages_impl(obj_class, dataset_str, images, object_present);
 | |
| }
 | |
| 
 | |
| void VocData::getClassImages_impl(const string& obj_class, const string& dataset_str, vector<ObdImage>& images, vector<char>& object_present)
 | |
| {
 | |
|     //generate the filename of the classification ground-truth textfile for the object class
 | |
|     string gtFilename = m_class_imageset_path;
 | |
|     gtFilename.replace(gtFilename.find("%s"),2,obj_class);
 | |
|     gtFilename.replace(gtFilename.find("%s"),2,dataset_str);
 | |
| 
 | |
|     //parse the ground truth file, storing in two separate vectors
 | |
|     //for the image code and the ground truth value
 | |
|     vector<string> image_codes;
 | |
|     readClassifierGroundTruth(gtFilename, image_codes, object_present);
 | |
| 
 | |
|     //prepare output arrays
 | |
|     images.clear();
 | |
| 
 | |
|     convertImageCodesToObdImages(image_codes, images);
 | |
| }
 | |
| 
 | |
| //Return the object data for all images of a given VOC object class
 | |
| //-----------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - dataset            Specifies whether to extract images from the training or test set
 | |
| //OUTPUTS:
 | |
| // - images             An array of ObdImage containing info of all images in chosen dataset (tag, path etc.)
 | |
| // - objects            Contains the extended object info (bounding box etc.) for each object instance in each image
 | |
| // - object_data        Contains VOC-specific extended object info (marked difficult etc.)
 | |
| // - ground_truth       Specifies whether there are any difficult/non-difficult instances of the current
 | |
| //                          object class within each image
 | |
| //NOTES:
 | |
| // This function returns extended object information in addition to the absent/present
 | |
| // classification data returned by getClassImages. The objects returned for each image in the 'objects'
 | |
| // array are of all object classes present in the image, and not just the class defined by 'obj_class'.
 | |
| // 'ground_truth' can be used to determine quickly whether an object instance of the given class is present
 | |
| // in an image or not.
 | |
| void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects)
 | |
| {
 | |
|     vector<vector<VocObjectData> > object_data;
 | |
|     vector<VocGT> ground_truth;
 | |
| 
 | |
|     getClassObjects(obj_class,dataset,images,objects,object_data,ground_truth);
 | |
| }
 | |
| 
 | |
| void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects, vector<vector<VocObjectData> >& object_data, vector<VocGT>& ground_truth)
 | |
| {
 | |
|     //generate the filename of the classification ground-truth textfile for the object class
 | |
|     string gtFilename = m_class_imageset_path;
 | |
|     gtFilename.replace(gtFilename.find("%s"),2,obj_class);
 | |
|     if (dataset == CV_OBD_TRAIN)
 | |
|     {
 | |
|         gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
 | |
|     } else {
 | |
|         gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
 | |
|     }
 | |
| 
 | |
|     //parse the ground truth file, storing in two separate vectors
 | |
|     //for the image code and the ground truth value
 | |
|     vector<string> image_codes;
 | |
|     vector<char> object_present;
 | |
|     readClassifierGroundTruth(gtFilename, image_codes, object_present);
 | |
| 
 | |
|     //prepare output arrays
 | |
|     images.clear();
 | |
|     objects.clear();
 | |
|     object_data.clear();
 | |
|     ground_truth.clear();
 | |
| 
 | |
|     string annotationFilename;
 | |
|     vector<ObdObject> image_objects;
 | |
|     vector<VocObjectData> image_object_data;
 | |
|     VocGT image_gt;
 | |
| 
 | |
|     //transfer to output arrays and read in object data for each image
 | |
|     for (size_t i = 0; i < image_codes.size(); ++i)
 | |
|     {
 | |
|         ObdImage image = getObjects(obj_class, image_codes[i], image_objects, image_object_data, image_gt);
 | |
| 
 | |
|         images.push_back(image);
 | |
|         objects.push_back(image_objects);
 | |
|         object_data.push_back(image_object_data);
 | |
|         ground_truth.push_back(image_gt);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Return ground truth data for the objects present in an image with a given UID
 | |
| //-----------------------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - id                 VOC Dataset unique identifier (string code in form YYYY_XXXXXX where YYYY is the year)
 | |
| //OUTPUTS:
 | |
| // - obj_class (*3)     Specifies the object class to use to resolve 'ground_truth'
 | |
| // - objects            Contains the extended object info (bounding box etc.) for each object in the image
 | |
| // - object_data (*2,3) Contains VOC-specific extended object info (marked difficult etc.)
 | |
| // - ground_truth (*3)  Specifies whether there are any difficult/non-difficult instances of the current
 | |
| //                          object class within the image
 | |
| //RETURN VALUE:
 | |
| // ObdImage containing path and other details of image file with given code
 | |
| //NOTES:
 | |
| // There are three versions of this function
 | |
| //  * One returns a simple array of objects given an id [1]
 | |
| //  * One returns the same as (1) plus VOC specific object data [2]
 | |
| //  * One returns the same as (2) plus the ground_truth flag. This also requires an extra input obj_class [3]
 | |
| ObdImage VocData::getObjects(const string& id, vector<ObdObject>& objects)
 | |
| {
 | |
|     vector<VocObjectData> object_data;
 | |
|     ObdImage image = getObjects(id, objects, object_data);
 | |
| 
 | |
|     return image;
 | |
| }
 | |
| 
 | |
| ObdImage VocData::getObjects(const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data)
 | |
| {
 | |
|     //first generate the filename of the annotation file
 | |
|     string annotationFilename = m_annotation_path;
 | |
| 
 | |
|     annotationFilename.replace(annotationFilename.find("%s"),2,id);
 | |
| 
 | |
|     //extract objects contained in the current image from the xml
 | |
|     extractVocObjects(annotationFilename,objects,object_data);
 | |
| 
 | |
|     //generate image path from extracted string code
 | |
|     string path = getImagePath(id);
 | |
| 
 | |
|     ObdImage image(id, path);
 | |
|     return image;
 | |
| }
 | |
| 
 | |
| ObdImage VocData::getObjects(const string& obj_class, const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data, VocGT& ground_truth)
 | |
| {
 | |
| 
 | |
|     //extract object data (except for ground truth flag)
 | |
|     ObdImage image = getObjects(id,objects,object_data);
 | |
| 
 | |
|     //pregenerate a flag to indicate whether the current class is present or not in the image
 | |
|     ground_truth = CV_VOC_GT_NONE;
 | |
|     //iterate through all objects in current image
 | |
|     for (size_t j = 0; j < objects.size(); ++j)
 | |
|     {
 | |
|         if (objects[j].object_class == obj_class)
 | |
|         {
 | |
|             if (object_data[j].difficult == false)
 | |
|             {
 | |
|                 //if at least one non-difficult example is present, this flag is always set to CV_VOC_GT_PRESENT
 | |
|                 ground_truth = CV_VOC_GT_PRESENT;
 | |
|                 break;
 | |
|             } else {
 | |
|                 //set if at least one object instance is present, but it is marked difficult
 | |
|                 ground_truth = CV_VOC_GT_DIFFICULT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return image;
 | |
| }
 | |
| 
 | |
| //Return ground truth data for the presence/absence of a given object class in an arbitrary array of images
 | |
| //---------------------------------------------------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - images             An array of ObdImage OR strings containing the images for which ground truth
 | |
| //                          will be computed
 | |
| //OUTPUTS:
 | |
| // - ground_truth       An output array indicating the presence/absence of obj_class within each image
 | |
| void VocData::getClassifierGroundTruth(const string& obj_class, const vector<ObdImage>& images, vector<char>& ground_truth)
 | |
| {
 | |
|     vector<char>(images.size()).swap(ground_truth);
 | |
| 
 | |
|     vector<ObdObject> objects;
 | |
|     vector<VocObjectData> object_data;
 | |
|     vector<char>::iterator gt_it = ground_truth.begin();
 | |
|     for (vector<ObdImage>::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it)
 | |
|     {
 | |
|         //getObjects(obj_class, it->id, objects, object_data, voc_ground_truth);
 | |
|         (*gt_it) = (getClassifierGroundTruthImage(obj_class, it->id));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VocData::getClassifierGroundTruth(const string& obj_class, const vector<string>& images, vector<char>& ground_truth)
 | |
| {
 | |
|     vector<char>(images.size()).swap(ground_truth);
 | |
| 
 | |
|     vector<ObdObject> objects;
 | |
|     vector<VocObjectData> object_data;
 | |
|     vector<char>::iterator gt_it = ground_truth.begin();
 | |
|     for (vector<string>::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it)
 | |
|     {
 | |
|         //getObjects(obj_class, (*it), objects, object_data, voc_ground_truth);
 | |
|         (*gt_it) = (getClassifierGroundTruthImage(obj_class, (*it)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Return ground truth data for the accuracy of detection results
 | |
| //--------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - images             An array of ObdImage containing the images for which ground truth
 | |
| //                          will be computed
 | |
| // - bounding_boxes     A 2D input array containing the bounding box rects of the objects of
 | |
| //                          obj_class which were detected in each image
 | |
| //OUTPUTS:
 | |
| // - ground_truth       A 2D output array indicating whether each object detection was accurate
 | |
| //                          or not
 | |
| // - detection_difficult A 2D output array indicating whether the detection fired on an object
 | |
| //                          marked as 'difficult'. This allows it to be ignored if necessary
 | |
| //                          (the voc documentation specifies objects marked as difficult
 | |
| //                          have no effects on the results and are effectively ignored)
 | |
| // - (ignore_difficult) If set to true, objects marked as difficult will be ignored when returning
 | |
| //                          the number of hits for p-r normalization (default = true)
 | |
| //RETURN VALUE:
 | |
| //                      Returns the number of object hits in total in the gt to allow proper normalization
 | |
| //                          of a p-r curve
 | |
| //NOTES:
 | |
| // As stated in the VOC documentation, multiple detections of the same object in an image are
 | |
| // considered FALSE detections e.g. 5 detections of a single object is counted as 1 correct
 | |
| // detection and 4 false detections - it is the responsibility of the participant's system
 | |
| // to filter multiple detections from its output
 | |
| int VocData::getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<Rect> >& bounding_boxes, const vector<vector<float> >& scores, vector<vector<char> >& ground_truth, vector<vector<char> >& detection_difficult, bool ignore_difficult)
 | |
| {
 | |
|     int recall_normalization = 0;
 | |
| 
 | |
|     /* first create a list of indices referring to the elements of bounding_boxes and scores in
 | |
|      * descending order of scores */
 | |
|     vector<ObdScoreIndexSorter> sorted_ids;
 | |
|     {
 | |
|         /* first count how many objects to allow preallocation */
 | |
|         size_t obj_count = 0;
 | |
|         CV_Assert(images.size() == bounding_boxes.size());
 | |
|         CV_Assert(scores.size() == bounding_boxes.size());
 | |
|         for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx)
 | |
|         {
 | |
|             CV_Assert(scores[im_idx].size() == bounding_boxes[im_idx].size());
 | |
|             obj_count += scores[im_idx].size();
 | |
|         }
 | |
|         /* preallocate id vector */
 | |
|         sorted_ids.resize(obj_count);
 | |
|         /* now copy across scores and indexes to preallocated vector */
 | |
|         int flat_pos = 0;
 | |
|         for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx)
 | |
|         {
 | |
|             for (size_t ob_idx = 0; ob_idx < scores[im_idx].size(); ++ob_idx)
 | |
|             {
 | |
|                 sorted_ids[flat_pos].score = scores[im_idx][ob_idx];
 | |
|                 sorted_ids[flat_pos].image_idx = (int)im_idx;
 | |
|                 sorted_ids[flat_pos].obj_idx = (int)ob_idx;
 | |
|                 ++flat_pos;
 | |
|             }
 | |
|         }
 | |
|         /* and sort the vector in descending order of score */
 | |
|         std::sort(sorted_ids.begin(),sorted_ids.end());
 | |
|         std::reverse(sorted_ids.begin(),sorted_ids.end());
 | |
|     }
 | |
| 
 | |
|     /* prepare ground truth + difficult vector (1st dimension) */
 | |
|     vector<vector<char> >(images.size()).swap(ground_truth);
 | |
|     vector<vector<char> >(images.size()).swap(detection_difficult);
 | |
|     vector<vector<char> > detected(images.size());
 | |
| 
 | |
|     vector<vector<ObdObject> > img_objects(images.size());
 | |
|     vector<vector<VocObjectData> > img_object_data(images.size());
 | |
|     /* preload object ground truth bounding box data */
 | |
|     {
 | |
|         vector<vector<ObdObject> > img_objects_all(images.size());
 | |
|         vector<vector<VocObjectData> > img_object_data_all(images.size());
 | |
|         for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
 | |
|         {
 | |
|             /* prepopulate ground truth bounding boxes */
 | |
|             getObjects(images[image_idx].id, img_objects_all[image_idx], img_object_data_all[image_idx]);
 | |
|             /* meanwhile, also set length of target ground truth + difficult vector to same as number of object detections (2nd dimension) */
 | |
|             ground_truth[image_idx].resize(bounding_boxes[image_idx].size());
 | |
|             detection_difficult[image_idx].resize(bounding_boxes[image_idx].size());
 | |
|         }
 | |
| 
 | |
|         /* save only instances of the object class concerned */
 | |
|         for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
 | |
|         {
 | |
|             for (size_t obj_idx = 0; obj_idx < img_objects_all[image_idx].size(); ++obj_idx)
 | |
|             {
 | |
|                 if (img_objects_all[image_idx][obj_idx].object_class == obj_class)
 | |
|                 {
 | |
|                     img_objects[image_idx].push_back(img_objects_all[image_idx][obj_idx]);
 | |
|                     img_object_data[image_idx].push_back(img_object_data_all[image_idx][obj_idx]);
 | |
|                 }
 | |
|             }
 | |
|             detected[image_idx].resize(img_objects[image_idx].size(), false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* calculate the total number of objects in the ground truth for the current dataset */
 | |
|     {
 | |
|         vector<ObdImage> gt_images;
 | |
|         vector<char> gt_object_present;
 | |
|         getClassImages(obj_class, dataset, gt_images, gt_object_present);
 | |
| 
 | |
|         for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx)
 | |
|         {
 | |
|             vector<ObdObject> gt_img_objects;
 | |
|             vector<VocObjectData> gt_img_object_data;
 | |
|             getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data);
 | |
|             for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx)
 | |
|             {
 | |
|                 if (gt_img_objects[obj_idx].object_class == obj_class)
 | |
|                 {
 | |
|                     if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false))
 | |
|                         ++recall_normalization;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef PR_DEBUG
 | |
|     int printed_count = 0;
 | |
| #endif
 | |
|     /* now iterate through detections in descending order of score, assigning to ground truth bounding boxes if possible */
 | |
|     for (size_t detect_idx = 0; detect_idx < sorted_ids.size(); ++detect_idx)
 | |
|     {
 | |
|         //read in indexes to make following code easier to read
 | |
|         int im_idx = sorted_ids[detect_idx].image_idx;
 | |
|         int ob_idx = sorted_ids[detect_idx].obj_idx;
 | |
|         //set ground truth for the current object to false by default
 | |
|         ground_truth[im_idx][ob_idx] = false;
 | |
|         detection_difficult[im_idx][ob_idx] = false;
 | |
|         float maxov = -1.0;
 | |
|         bool max_is_difficult = false;
 | |
|         int max_gt_obj_idx = -1;
 | |
|         //-- for each detected object iterate through objects present in the bounding box ground truth --
 | |
|         for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx)
 | |
|         {
 | |
|             if (detected[im_idx][gt_obj_idx] == false)
 | |
|             {
 | |
|                 //check if the detected object and ground truth object overlap by a sufficient margin
 | |
|                 float ov = testBoundingBoxesForOverlap(bounding_boxes[im_idx][ob_idx], img_objects[im_idx][gt_obj_idx].boundingBox);
 | |
|                 if (ov != -1.0)
 | |
|                 {
 | |
|                     //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match)
 | |
|                     if (ov > maxov)
 | |
|                     {
 | |
|                         maxov = ov;
 | |
|                         max_gt_obj_idx = (int)gt_obj_idx;
 | |
|                         //store whether the maximum detection is marked as difficult or not
 | |
|                         max_is_difficult = (img_object_data[im_idx][gt_obj_idx].difficult);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         //-- if a match was found, set the ground truth of the current object to true --
 | |
|         if (maxov != -1.0)
 | |
|         {
 | |
|             CV_Assert(max_gt_obj_idx != -1);
 | |
|             ground_truth[im_idx][ob_idx] = true;
 | |
|             //store whether the maximum detection was marked as 'difficult' or not
 | |
|             detection_difficult[im_idx][ob_idx] = max_is_difficult;
 | |
|             //remove the ground truth object so it doesn't match with subsequent detected objects
 | |
|             //** this is the behaviour defined by the voc documentation **
 | |
|             detected[im_idx][max_gt_obj_idx] = true;
 | |
|         }
 | |
| #ifdef PR_DEBUG
 | |
|         if (printed_count < 10)
 | |
|         {
 | |
|             cout << printed_count << ": id=" << images[im_idx].id << ", score=" << scores[im_idx][ob_idx] << " (" << ob_idx << ") [" << bounding_boxes[im_idx][ob_idx].x << "," <<
 | |
|                     bounding_boxes[im_idx][ob_idx].y << "," << bounding_boxes[im_idx][ob_idx].width + bounding_boxes[im_idx][ob_idx].x <<
 | |
|                     "," << bounding_boxes[im_idx][ob_idx].height + bounding_boxes[im_idx][ob_idx].y << "] detected=" << ground_truth[im_idx][ob_idx] <<
 | |
|                     ", difficult=" << detection_difficult[im_idx][ob_idx] << endl;
 | |
|             ++printed_count;
 | |
|             /* print ground truth */
 | |
|             for (int gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx)
 | |
|             {
 | |
|                 cout << "    GT: [" << img_objects[im_idx][gt_obj_idx].boundingBox.x << "," <<
 | |
|                         img_objects[im_idx][gt_obj_idx].boundingBox.y << "," << img_objects[im_idx][gt_obj_idx].boundingBox.width + img_objects[im_idx][gt_obj_idx].boundingBox.x <<
 | |
|                         "," << img_objects[im_idx][gt_obj_idx].boundingBox.height + img_objects[im_idx][gt_obj_idx].boundingBox.y << "]";
 | |
|                 if (gt_obj_idx == max_gt_obj_idx) cout << " <--- (" << maxov << " overlap)";
 | |
|                 cout << endl;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return recall_normalization;
 | |
| }
 | |
| 
 | |
| //Write VOC-compliant classifier results file
 | |
| //-------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - dataset            Specifies whether working with the training or test set
 | |
| // - images             An array of ObdImage containing the images for which data will be saved to the result file
 | |
| // - scores             A corresponding array of confidence scores given a query
 | |
| // - (competition)      If specified, defines which competition the results are for (see VOC documentation - default 1)
 | |
| //NOTES:
 | |
| // The result file path and filename are determined automatically using m_results_directory as a base
 | |
| void VocData::writeClassifierResultsFile( const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<float>& scores, const int competition, const bool overwrite_ifexists)
 | |
| {
 | |
|     CV_Assert(images.size() == scores.size());
 | |
| 
 | |
|     string output_file_base, output_file;
 | |
|     if (dataset == CV_OBD_TRAIN)
 | |
|     {
 | |
|         output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_train_set + "_" + obj_class;
 | |
|     } else {
 | |
|         output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_test_set + "_" + obj_class;
 | |
|     }
 | |
|     output_file = output_file_base + ".txt";
 | |
| 
 | |
|     //check if file exists, and if so create a numbered new file instead
 | |
|     if (overwrite_ifexists == false)
 | |
|     {
 | |
|         struct stat stFileInfo;
 | |
|         if (stat(output_file.c_str(),&stFileInfo) == 0)
 | |
|         {
 | |
|             string output_file_new;
 | |
|             int filenum = 0;
 | |
|             do
 | |
|             {
 | |
|                 ++filenum;
 | |
|                 output_file_new = output_file_base + "_" + integerToString(filenum);
 | |
|                 output_file = output_file_new + ".txt";
 | |
|             } while (stat(output_file.c_str(),&stFileInfo) == 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //output data to file
 | |
|     std::ofstream result_file(output_file.c_str());
 | |
|     if (result_file.is_open())
 | |
|     {
 | |
|         for (size_t i = 0; i < images.size(); ++i)
 | |
|         {
 | |
|             result_file << images[i].id << " " << scores[i] << endl;
 | |
|         }
 | |
|         result_file.close();
 | |
|     } else {
 | |
|         string err_msg = "could not open classifier results file '" + output_file + "' for writing. Before running for the first time, a 'results' subdirectory should be created within the VOC dataset base directory. e.g. if the VOC data is stored in /VOC/VOC2010 then the path /VOC/results must be created.";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| }
 | |
| 
 | |
| //---------------------------------------
 | |
| //CALCULATE METRICS FROM VOC RESULTS DATA
 | |
| //---------------------------------------
 | |
| 
 | |
| //Utility function to construct a VOC-standard classification results filename
 | |
| //----------------------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string
 | |
| // - task               Specifies whether to generate a filename for the classification or detection task
 | |
| // - dataset            Specifies whether working with the training or test set
 | |
| // - (competition)      If specified, defines which competition the results are for (see VOC documentation
 | |
| //                      default of -1 means this is set to 1 for the classification task and 3 for the detection task)
 | |
| // - (number)           If specified and above 0, defines which of a number of duplicate results file produced for a given set of
 | |
| //                      of settings should be used (this number will be added as a postfix to the filename)
 | |
| //NOTES:
 | |
| // This is primarily useful for returning the filename of a classification file previously computed using writeClassifierResultsFile
 | |
| // for example when calling calcClassifierPrecRecall
 | |
| string VocData::getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition, const int number)
 | |
| {
 | |
|     if ((competition < 1) && (competition != -1))
 | |
|         CV_Error(CV_StsBadArg,"competition argument should be a positive non-zero number or -1 to accept the default");
 | |
|     if ((number < 1) && (number != -1))
 | |
|         CV_Error(CV_StsBadArg,"number argument should be a positive non-zero number or -1 to accept the default");
 | |
| 
 | |
|     string dset, task_type;
 | |
| 
 | |
|     if (dataset == CV_OBD_TRAIN)
 | |
|     {
 | |
|         dset = m_train_set;
 | |
|     } else {
 | |
|         dset = m_test_set;
 | |
|     }
 | |
| 
 | |
|     int comp = competition;
 | |
|     if (task == CV_VOC_TASK_CLASSIFICATION)
 | |
|     {
 | |
|         task_type = "cls";
 | |
|         if (comp == -1) comp = 1;
 | |
|     } else {
 | |
|         task_type = "det";
 | |
|         if (comp == -1) comp = 3;
 | |
|     }
 | |
| 
 | |
|     stringstream ss;
 | |
|     if (number < 1)
 | |
|     {
 | |
|         ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << ".txt";
 | |
|     } else {
 | |
|         ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << "_" << number << ".txt";
 | |
|     }
 | |
| 
 | |
|     string filename = ss.str();
 | |
|     return filename;
 | |
| }
 | |
| 
 | |
| //Calculate metrics for classification results
 | |
| //--------------------------------------------
 | |
| //INPUTS:
 | |
| // - ground_truth       A vector of booleans determining whether the currently tested class is present in each input image
 | |
| // - scores             A vector containing the similarity score for each input image (higher is more similar)
 | |
| //OUTPUTS:
 | |
| // - precision          A vector containing the precision calculated at each datapoint of a p-r curve generated from the result set
 | |
| // - recall             A vector containing the recall calculated at each datapoint of a p-r curve generated from the result set
 | |
| // - ap                The ap metric calculated from the result set
 | |
| // - (ranking)          A vector of the same length as 'ground_truth' and 'scores' containing the order of the indices in both of
 | |
| //                      these arrays when sorting by the ranking score in descending order
 | |
| //NOTES:
 | |
| // The result file path and filename are determined automatically using m_results_directory as a base
 | |
| void VocData::calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking)
 | |
| {
 | |
|     vector<char> res_ground_truth;
 | |
|     getClassifierGroundTruth(obj_class, images, res_ground_truth);
 | |
| 
 | |
|     calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking);
 | |
| }
 | |
| 
 | |
| void VocData::calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap)
 | |
| {
 | |
|     vector<char> res_ground_truth;
 | |
|     getClassifierGroundTruth(obj_class, images, res_ground_truth);
 | |
| 
 | |
|     vector<size_t> ranking;
 | |
|     calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking);
 | |
| }
 | |
| 
 | |
| //< Overloaded version which accepts VOC classification result file input instead of array of scores/ground truth >
 | |
| //INPUTS:
 | |
| // - input_file         The path to the VOC standard results file to use for calculating precision/recall
 | |
| //                      If a full path is not specified, it is assumed this file is in the VOC standard results directory
 | |
| //                      A VOC standard filename can be retrieved (as used by writeClassifierResultsFile) by calling  getClassifierResultsFilename
 | |
| 
 | |
| void VocData::calcClassifierPrecRecall(const string& input_file, vector<float>& precision, vector<float>& recall, float& ap, bool outputRankingFile)
 | |
| {
 | |
|     //read in classification results file
 | |
|     vector<string> res_image_codes;
 | |
|     vector<float> res_scores;
 | |
| 
 | |
|     string input_file_std = checkFilenamePathsep(input_file);
 | |
|     readClassifierResultsFile(input_file_std, res_image_codes, res_scores);
 | |
| 
 | |
|     //extract the object class and dataset from the results file filename
 | |
|     string class_name, dataset_name;
 | |
|     extractDataFromResultsFilename(input_file_std, class_name, dataset_name);
 | |
| 
 | |
|     //generate the ground truth for the images extracted from the results file
 | |
|     vector<char> res_ground_truth;
 | |
| 
 | |
|     getClassifierGroundTruth(class_name, res_image_codes, res_ground_truth);
 | |
| 
 | |
|     if (outputRankingFile)
 | |
|     {
 | |
|         /* 1. store sorting order by score (descending) in 'order' */
 | |
|         vector<std::pair<size_t, vector<float>::const_iterator> > order(res_scores.size());
 | |
| 
 | |
|         size_t n = 0;
 | |
|         for (vector<float>::const_iterator it = res_scores.begin(); it != res_scores.end(); ++it, ++n)
 | |
|             order[n] = make_pair(n, it);
 | |
| 
 | |
|         std::sort(order.begin(),order.end(),orderingSorter());
 | |
| 
 | |
|         /* 2. save ranking results to text file */
 | |
|         string input_file_std1 = checkFilenamePathsep(input_file);
 | |
|         size_t fnamestart = input_file_std1.rfind("/");
 | |
|         string scoregt_file_str = input_file_std1.substr(0,fnamestart+1) + "scoregt_" + class_name + ".txt";
 | |
|         std::ofstream scoregt_file(scoregt_file_str.c_str());
 | |
|         if (scoregt_file.is_open())
 | |
|         {
 | |
|             for (size_t i = 0; i < res_scores.size(); ++i)
 | |
|             {
 | |
|                 scoregt_file << res_image_codes[order[i].first] << " " << res_scores[order[i].first] << " " << res_ground_truth[order[i].first] << endl;
 | |
|             }
 | |
|             scoregt_file.close();
 | |
|         } else {
 | |
|             string err_msg = "could not open scoregt file '" + scoregt_file_str + "' for writing.";
 | |
|             CV_Error(CV_StsError,err_msg.c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //finally, calculate precision+recall+ap
 | |
|     vector<size_t> ranking;
 | |
|     calcPrecRecall_impl(res_ground_truth,res_scores,precision,recall,ap,ranking);
 | |
| }
 | |
| 
 | |
| //< Protected implementation of Precision-Recall calculation used by both calcClassifierPrecRecall and calcDetectorPrecRecall >
 | |
| 
 | |
| void VocData::calcPrecRecall_impl(const vector<char>& ground_truth, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking, int recall_normalization)
 | |
| {
 | |
|     CV_Assert(ground_truth.size() == scores.size());
 | |
| 
 | |
|     //add extra element for p-r at 0 recall (in case that first retrieved is positive)
 | |
|     vector<float>(scores.size()+1).swap(precision);
 | |
|     vector<float>(scores.size()+1).swap(recall);
 | |
| 
 | |
|     // SORT RESULTS BY THEIR SCORE
 | |
|     /* 1. store sorting order in 'order' */
 | |
|     VocData::getSortOrder(scores, ranking);
 | |
| 
 | |
| #ifdef PR_DEBUG
 | |
|     std::ofstream scoregt_file("D:/pr.txt");
 | |
|     if (scoregt_file.is_open())
 | |
|     {
 | |
|        for (int i = 0; i < scores.size(); ++i)
 | |
|        {
 | |
|            scoregt_file << scores[ranking[i]] << " " << ground_truth[ranking[i]] << endl;
 | |
|        }
 | |
|        scoregt_file.close();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // CALCULATE PRECISION+RECALL
 | |
| 
 | |
|     int retrieved_hits = 0;
 | |
| 
 | |
|     int recall_norm;
 | |
|     if (recall_normalization != -1)
 | |
|     {
 | |
|         recall_norm = recall_normalization;
 | |
|     } else {
 | |
|         recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
 | |
|     }
 | |
| 
 | |
|     ap = 0;
 | |
|     recall[0] = 0;
 | |
|     for (size_t idx = 0; idx < ground_truth.size(); ++idx)
 | |
|     {
 | |
|         if (ground_truth[ranking[idx]] != 0) ++retrieved_hits;
 | |
| 
 | |
|         precision[idx+1] = static_cast<float>(retrieved_hits)/static_cast<float>(idx+1);
 | |
|         recall[idx+1] = static_cast<float>(retrieved_hits)/static_cast<float>(recall_norm);
 | |
| 
 | |
|         if (idx == 0)
 | |
|         {
 | |
|             //add further point at 0 recall with the same precision value as the first computed point
 | |
|             precision[idx] = precision[idx+1];
 | |
|         }
 | |
|         if (recall[idx+1] == 1.0)
 | |
|         {
 | |
|             //if recall = 1, then end early as all positive images have been found
 | |
|             recall.resize(idx+2);
 | |
|             precision.resize(idx+2);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* ap calculation */
 | |
|     if (m_sampled_ap == false)
 | |
|     {
 | |
|         // FOR VOC2010+ AP IS CALCULATED FROM ALL DATAPOINTS
 | |
|         /* make precision monotonically decreasing for purposes of calculating ap */
 | |
|         vector<float> precision_monot(precision.size());
 | |
|         vector<float>::iterator prec_m_it = precision_monot.begin();
 | |
|         for (vector<float>::iterator prec_it = precision.begin(); prec_it != precision.end(); ++prec_it, ++prec_m_it)
 | |
|         {
 | |
|             vector<float>::iterator max_elem;
 | |
|             max_elem = std::max_element(prec_it,precision.end());
 | |
|             (*prec_m_it) = (*max_elem);
 | |
|         }
 | |
|         /* calculate ap */
 | |
|         for (size_t idx = 0; idx < (recall.size()-1); ++idx)
 | |
|         {
 | |
|             ap += (recall[idx+1] - recall[idx])*precision_monot[idx+1] +   //no need to take min of prec - is monotonically decreasing
 | |
|                     0.5f*(recall[idx+1] - recall[idx])*std::abs(precision_monot[idx+1] - precision_monot[idx]);
 | |
|         }
 | |
|     } else {
 | |
|         // FOR BEFORE VOC2010 AP IS CALCULATED BY SAMPLING PRECISION AT RECALL 0.0,0.1,..,1.0
 | |
| 
 | |
|         for (float recall_pos = 0.f; recall_pos <= 1.f; recall_pos += 0.1f)
 | |
|         {
 | |
|             //find iterator of the precision corresponding to the first recall >= recall_pos
 | |
|             vector<float>::iterator recall_it = recall.begin();
 | |
|             vector<float>::iterator prec_it = precision.begin();
 | |
| 
 | |
|             while ((*recall_it) < recall_pos)
 | |
|             {
 | |
|                 ++recall_it;
 | |
|                 ++prec_it;
 | |
|                 if (recall_it == recall.end()) break;
 | |
|             }
 | |
| 
 | |
|             /* if no recall >= recall_pos found, this level of recall is never reached so stop adding to ap */
 | |
|             if (recall_it == recall.end()) break;
 | |
| 
 | |
|             /* if the prec_it is valid, compute the max precision at this level of recall or higher */
 | |
|             vector<float>::iterator max_prec = std::max_element(prec_it,precision.end());
 | |
| 
 | |
|             ap += (*max_prec)/11;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* functions for calculating confusion matrix rows */
 | |
| 
 | |
| //Calculate rows of a confusion matrix
 | |
| //------------------------------------
 | |
| //INPUTS:
 | |
| // - obj_class          The VOC object class identifier string for the confusion matrix row to compute
 | |
| // - images             An array of ObdImage containing the images to use for the computation
 | |
| // - scores             A corresponding array of confidence scores for the presence of obj_class in each image
 | |
| // - cond               Defines whether to use a cut off point based on recall (CV_VOC_CCOND_RECALL) or score
 | |
| //                      (CV_VOC_CCOND_SCORETHRESH) the latter is useful for classifier detections where positive
 | |
| //                      values are positive detections and negative values are negative detections
 | |
| // - threshold          Threshold value for cond. In case of CV_VOC_CCOND_RECALL, is proportion recall (e.g. 0.5).
 | |
| //                      In the case of CV_VOC_CCOND_SCORETHRESH is the value above which to count results.
 | |
| //OUTPUTS:
 | |
| // - output_headers     An output vector of object class headers for the confusion matrix row
 | |
| // - output_values      An output vector of values for the confusion matrix row corresponding to the classes
 | |
| //                      defined in output_headers
 | |
| //NOTES:
 | |
| // The methodology used by the classifier version of this function is that true positives have a single unit
 | |
| // added to the obj_class column in the confusion matrix row, whereas false positives have a single unit
 | |
| // distributed in proportion between all the columns in the confusion matrix row corresponding to the objects
 | |
| // present in the image.
 | |
| void VocData::calcClassifierConfMatRow(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values)
 | |
| {
 | |
|     CV_Assert(images.size() == scores.size());
 | |
| 
 | |
|     // SORT RESULTS BY THEIR SCORE
 | |
|     /* 1. store sorting order in 'ranking' */
 | |
|     vector<size_t> ranking;
 | |
|     VocData::getSortOrder(scores, ranking);
 | |
| 
 | |
|     // CALCULATE CONFUSION MATRIX ENTRIES
 | |
|     /* prepare object category headers */
 | |
|     output_headers = m_object_classes;
 | |
|     vector<float>(output_headers.size(),0.0).swap(output_values);
 | |
|     /* find the index of the target object class in the headers for later use */
 | |
|     int target_idx;
 | |
|     {
 | |
|         vector<string>::iterator target_idx_it = std::find(output_headers.begin(),output_headers.end(),obj_class);
 | |
|         /* if the target class can not be found, raise an exception */
 | |
|         if (target_idx_it == output_headers.end())
 | |
|         {
 | |
|             string err_msg = "could not find the target object class '" + obj_class + "' in list of valid classes.";
 | |
|             CV_Error(CV_StsError,err_msg.c_str());
 | |
|         }
 | |
|         /* convert iterator to index */
 | |
|         target_idx = (int)std::distance(output_headers.begin(),target_idx_it);
 | |
|     }
 | |
| 
 | |
|     /* prepare variables related to calculating recall if using the recall threshold */
 | |
|     int retrieved_hits = 0;
 | |
|     int total_relevant = 0;
 | |
|     if (cond == CV_VOC_CCOND_RECALL)
 | |
|     {
 | |
|         vector<char> ground_truth;
 | |
|         /* in order to calculate the total number of relevant images for normalization of recall
 | |
|             it's necessary to extract the ground truth for the images under consideration */
 | |
|         getClassifierGroundTruth(obj_class, images, ground_truth);
 | |
|         total_relevant = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
 | |
|     }
 | |
| 
 | |
|     /* iterate through images */
 | |
|     vector<ObdObject> img_objects;
 | |
|     vector<VocObjectData> img_object_data;
 | |
|     int total_images = 0;
 | |
|     for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
 | |
|     {
 | |
|         /* if using the score as the break condition, check for it now */
 | |
|         if (cond == CV_VOC_CCOND_SCORETHRESH)
 | |
|         {
 | |
|             if (scores[ranking[image_idx]] <= threshold) break;
 | |
|         }
 | |
|         /* if continuing for this iteration, increment the image counter for later normalization */
 | |
|         ++total_images;
 | |
|         /* for each image retrieve the objects contained */
 | |
|         getObjects(images[ranking[image_idx]].id, img_objects, img_object_data);
 | |
|         //check if the tested for object class is present
 | |
|         if (getClassifierGroundTruthImage(obj_class, images[ranking[image_idx]].id))
 | |
|         {
 | |
|             //if the target class is present, assign fully to the target class element in the confusion matrix row
 | |
|             output_values[target_idx] += 1.0;
 | |
|             if (cond == CV_VOC_CCOND_RECALL) ++retrieved_hits;
 | |
|         } else {
 | |
|             //first delete all objects marked as difficult
 | |
|             for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx)
 | |
|             {
 | |
|                 if (img_object_data[obj_idx].difficult == true)
 | |
|                 {
 | |
|                     vector<ObdObject>::iterator it1 = img_objects.begin();
 | |
|                     std::advance(it1,obj_idx);
 | |
|                     img_objects.erase(it1);
 | |
|                     vector<VocObjectData>::iterator it2 = img_object_data.begin();
 | |
|                     std::advance(it2,obj_idx);
 | |
|                     img_object_data.erase(it2);
 | |
|                     --obj_idx;
 | |
|                 }
 | |
|             }
 | |
|             //if the target class is not present, add values to the confusion matrix row in equal proportions to all objects present in the image
 | |
|             for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx)
 | |
|             {
 | |
|                 //find the index of the currently considered object
 | |
|                 vector<string>::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[obj_idx].object_class);
 | |
|                 //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception
 | |
|                 if (class_idx_it == output_headers.end())
 | |
|                 {
 | |
|                     string err_msg = "could not find object class '" + img_objects[obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes.";
 | |
|                     CV_Error(CV_StsError,err_msg.c_str());
 | |
|                 }
 | |
|                 /* convert iterator to index */
 | |
|                 int class_idx = (int)std::distance(output_headers.begin(),class_idx_it);
 | |
|                 //add to confusion matrix row in proportion
 | |
|                 output_values[class_idx] += 1.f/static_cast<float>(img_objects.size());
 | |
|             }
 | |
|         }
 | |
|         //check break conditions if breaking on certain level of recall
 | |
|         if (cond == CV_VOC_CCOND_RECALL)
 | |
|         {
 | |
|             if(static_cast<float>(retrieved_hits)/static_cast<float>(total_relevant) >= threshold) break;
 | |
|         }
 | |
|     }
 | |
|     /* finally, normalize confusion matrix row */
 | |
|     for (vector<float>::iterator it = output_values.begin(); it < output_values.end(); ++it)
 | |
|     {
 | |
|         (*it) /= static_cast<float>(total_images);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // NOTE: doesn't ignore repeated detections
 | |
| void VocData::calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<float> >& scores, const vector<vector<Rect> >& bounding_boxes, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values, bool ignore_difficult)
 | |
| {
 | |
|     CV_Assert(images.size() == scores.size());
 | |
|     CV_Assert(images.size() == bounding_boxes.size());
 | |
| 
 | |
|     //collapse scores and ground_truth vectors into 1D vectors to allow ranking
 | |
|     /* define final flat vectors */
 | |
|     vector<string> images_flat;
 | |
|     vector<float> scores_flat;
 | |
|     vector<Rect> bounding_boxes_flat;
 | |
|     {
 | |
|         /* first count how many objects to allow preallocation */
 | |
|         int obj_count = 0;
 | |
|         CV_Assert(scores.size() == bounding_boxes.size());
 | |
|         for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx)
 | |
|         {
 | |
|             CV_Assert(scores[img_idx].size() == bounding_boxes[img_idx].size());
 | |
|             for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx)
 | |
|             {
 | |
|                 ++obj_count;
 | |
|             }
 | |
|         }
 | |
|         /* preallocate vectors */
 | |
|         images_flat.resize(obj_count);
 | |
|         scores_flat.resize(obj_count);
 | |
|         bounding_boxes_flat.resize(obj_count);
 | |
|         /* now copy across to preallocated vectors */
 | |
|         int flat_pos = 0;
 | |
|         for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx)
 | |
|         {
 | |
|             for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx)
 | |
|             {
 | |
|                 images_flat[flat_pos] = images[img_idx].id;
 | |
|                 scores_flat[flat_pos] = scores[img_idx][obj_idx];
 | |
|                 bounding_boxes_flat[flat_pos] = bounding_boxes[img_idx][obj_idx];
 | |
|                 ++flat_pos;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // SORT RESULTS BY THEIR SCORE
 | |
|     /* 1. store sorting order in 'ranking' */
 | |
|     vector<size_t> ranking;
 | |
|     VocData::getSortOrder(scores_flat, ranking);
 | |
| 
 | |
|     // CALCULATE CONFUSION MATRIX ENTRIES
 | |
|     /* prepare object category headers */
 | |
|     output_headers = m_object_classes;
 | |
|     output_headers.push_back("background");
 | |
|     vector<float>(output_headers.size(),0.0).swap(output_values);
 | |
| 
 | |
|     /* prepare variables related to calculating recall if using the recall threshold */
 | |
|     int retrieved_hits = 0;
 | |
|     int total_relevant = 0;
 | |
|     if (cond == CV_VOC_CCOND_RECALL)
 | |
|     {
 | |
| //        vector<char> ground_truth;
 | |
| //        /* in order to calculate the total number of relevant images for normalization of recall
 | |
| //            it's necessary to extract the ground truth for the images under consideration */
 | |
| //        getClassifierGroundTruth(obj_class, images, ground_truth);
 | |
| //        total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<bool>(),true));
 | |
|         /* calculate the total number of objects in the ground truth for the current dataset */
 | |
|         vector<ObdImage> gt_images;
 | |
|         vector<char> gt_object_present;
 | |
|         getClassImages(obj_class, dataset, gt_images, gt_object_present);
 | |
| 
 | |
|         for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx)
 | |
|         {
 | |
|             vector<ObdObject> gt_img_objects;
 | |
|             vector<VocObjectData> gt_img_object_data;
 | |
|             getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data);
 | |
|             for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx)
 | |
|             {
 | |
|                 if (gt_img_objects[obj_idx].object_class == obj_class)
 | |
|                 {
 | |
|                     if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false))
 | |
|                         ++total_relevant;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* iterate through objects */
 | |
|     vector<ObdObject> img_objects;
 | |
|     vector<VocObjectData> img_object_data;
 | |
|     int total_objects = 0;
 | |
|     for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
 | |
|     {
 | |
|         /* if using the score as the break condition, check for it now */
 | |
|         if (cond == CV_VOC_CCOND_SCORETHRESH)
 | |
|         {
 | |
|             if (scores_flat[ranking[image_idx]] <= threshold) break;
 | |
|         }
 | |
|         /* increment the image counter for later normalization */
 | |
|         ++total_objects;
 | |
|         /* for each image retrieve the objects contained */
 | |
|         getObjects(images[ranking[image_idx]].id, img_objects, img_object_data);
 | |
| 
 | |
|         //find the ground truth object which has the highest overlap score with the detected object
 | |
|         float maxov = -1.0;
 | |
|         int max_gt_obj_idx = -1;
 | |
|         //-- for each detected object iterate through objects present in ground truth --
 | |
|         for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects.size(); ++gt_obj_idx)
 | |
|         {
 | |
|             //check difficulty flag
 | |
|             if (ignore_difficult || (img_object_data[gt_obj_idx].difficult == false))
 | |
|             {
 | |
|                 //if the class matches, then check if the detected object and ground truth object overlap by a sufficient margin
 | |
|                 float ov = testBoundingBoxesForOverlap(bounding_boxes_flat[ranking[image_idx]], img_objects[gt_obj_idx].boundingBox);
 | |
|                 if (ov != -1.f)
 | |
|                 {
 | |
|                     //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match)
 | |
|                     if (ov > maxov)
 | |
|                     {
 | |
|                         maxov = ov;
 | |
|                         max_gt_obj_idx = (int)gt_obj_idx;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //assign to appropriate object class if an object was detected
 | |
|         if (maxov != -1.0)
 | |
|         {
 | |
|             //find the index of the currently considered object
 | |
|             vector<string>::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[max_gt_obj_idx].object_class);
 | |
|             //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception
 | |
|             if (class_idx_it == output_headers.end())
 | |
|             {
 | |
|                 string err_msg = "could not find object class '" + img_objects[max_gt_obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes.";
 | |
|                 CV_Error(CV_StsError,err_msg.c_str());
 | |
|             }
 | |
|             /* convert iterator to index */
 | |
|             int class_idx = (int)std::distance(output_headers.begin(),class_idx_it);
 | |
|             //add to confusion matrix row in proportion
 | |
|             output_values[class_idx] += 1.0;
 | |
|         } else {
 | |
|             //otherwise assign to background class
 | |
|             output_values[output_values.size()-1] += 1.0;
 | |
|         }
 | |
| 
 | |
|         //check break conditions if breaking on certain level of recall
 | |
|         if (cond == CV_VOC_CCOND_RECALL)
 | |
|         {
 | |
|             if(static_cast<float>(retrieved_hits)/static_cast<float>(total_relevant) >= threshold) break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* finally, normalize confusion matrix row */
 | |
|     for (vector<float>::iterator it = output_values.begin(); it < output_values.end(); ++it)
 | |
|     {
 | |
|         (*it) /= static_cast<float>(total_objects);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Save Precision-Recall results to a p-r curve in GNUPlot format
 | |
| //--------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - output_file        The file to which to save the GNUPlot data file. If only a filename is specified, the data
 | |
| //                      file is saved to the standard VOC results directory.
 | |
| // - precision          Vector of precisions as returned from calcClassifier/DetectorPrecRecall
 | |
| // - recall             Vector of recalls as returned from calcClassifier/DetectorPrecRecall
 | |
| // - ap                ap as returned from calcClassifier/DetectorPrecRecall
 | |
| // - (title)            Title to use for the plot (if not specified, just the ap is printed as the title)
 | |
| //                      This also specifies the filename of the output file if printing to pdf
 | |
| // - (plot_type)        Specifies whether to instruct GNUPlot to save to a PDF file (CV_VOC_PLOT_PDF) or directly
 | |
| //                      to screen (CV_VOC_PLOT_SCREEN) in the datafile
 | |
| //NOTES:
 | |
| // The GNUPlot data file can be executed using GNUPlot from the commandline in the following way:
 | |
| //      >> GNUPlot <output_file>
 | |
| // This will then display the p-r curve on the screen or save it to a pdf file depending on plot_type
 | |
| 
 | |
| void VocData::savePrecRecallToGnuplot(const string& output_file, const vector<float>& precision, const vector<float>& recall, const float ap, const string title, const VocPlotType plot_type)
 | |
| {
 | |
|     string output_file_std = checkFilenamePathsep(output_file);
 | |
| 
 | |
|     //if no directory is specified, by default save the output file in the results directory
 | |
| //    if (output_file_std.find("/") == output_file_std.npos)
 | |
| //    {
 | |
| //        output_file_std = m_results_directory + output_file_std;
 | |
| //    }
 | |
| 
 | |
|     std::ofstream plot_file(output_file_std.c_str());
 | |
| 
 | |
|     if (plot_file.is_open())
 | |
|     {
 | |
|         plot_file << "set xrange [0:1]" << endl;
 | |
|         plot_file << "set yrange [0:1]" << endl;
 | |
|         plot_file << "set size square" << endl;
 | |
|         string title_text = title;
 | |
|         if (title_text.size() == 0) title_text = "Precision-Recall Curve";
 | |
|         plot_file << "set title \"" << title_text << " (ap: " << ap << ")\"" << endl;
 | |
|         plot_file << "set xlabel \"Recall\"" << endl;
 | |
|         plot_file << "set ylabel \"Precision\"" << endl;
 | |
|         plot_file << "set style data lines" << endl;
 | |
|         plot_file << "set nokey" << endl;
 | |
|         if (plot_type == CV_VOC_PLOT_PNG)
 | |
|         {
 | |
|             plot_file << "set terminal png" << endl;
 | |
|             string pdf_filename;
 | |
|             if (title.size() != 0)
 | |
|             {
 | |
|                 pdf_filename = title;
 | |
|             } else {
 | |
|                 pdf_filename = "prcurve";
 | |
|             }
 | |
|             plot_file << "set out \"" << title << ".png\"" << endl;
 | |
|         }
 | |
|         plot_file << "plot \"-\" using 1:2" << endl;
 | |
|         plot_file << "# X Y" << endl;
 | |
|         CV_Assert(precision.size() == recall.size());
 | |
|         for (size_t i = 0; i < precision.size(); ++i)
 | |
|         {
 | |
|             plot_file << "  " << recall[i] << " " << precision[i] << endl;
 | |
|         }
 | |
|         plot_file << "end" << endl;
 | |
|         if (plot_type == CV_VOC_PLOT_SCREEN)
 | |
|         {
 | |
|             plot_file << "pause -1" << endl;
 | |
|         }
 | |
|         plot_file.close();
 | |
|     } else {
 | |
|         string err_msg = "could not open plot file '" + output_file_std + "' for writing.";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VocData::readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present)
 | |
| {
 | |
|     images.clear();
 | |
| 
 | |
|     string gtFilename = m_class_imageset_path;
 | |
|     gtFilename.replace(gtFilename.find("%s"),2,obj_class);
 | |
|     if (dataset == CV_OBD_TRAIN)
 | |
|     {
 | |
|         gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
 | |
|     } else {
 | |
|         gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
 | |
|     }
 | |
| 
 | |
|     vector<string> image_codes;
 | |
|     readClassifierGroundTruth(gtFilename, image_codes, object_present);
 | |
| 
 | |
|     convertImageCodesToObdImages(image_codes, images);
 | |
| }
 | |
| 
 | |
| void VocData::readClassifierResultsFile(const std:: string& input_file, vector<ObdImage>& images, vector<float>& scores)
 | |
| {
 | |
|     images.clear();
 | |
| 
 | |
|     string input_file_std = checkFilenamePathsep(input_file);
 | |
| 
 | |
|     //if no directory is specified, by default search for the input file in the results directory
 | |
| //    if (input_file_std.find("/") == input_file_std.npos)
 | |
| //    {
 | |
| //        input_file_std = m_results_directory + input_file_std;
 | |
| //    }
 | |
| 
 | |
|     vector<string> image_codes;
 | |
|     readClassifierResultsFile(input_file_std, image_codes, scores);
 | |
| 
 | |
|     convertImageCodesToObdImages(image_codes, images);
 | |
| }
 | |
| 
 | |
| void VocData::readDetectorResultsFile(const string& input_file, vector<ObdImage>& images, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes)
 | |
| {
 | |
|     images.clear();
 | |
| 
 | |
|     string input_file_std = checkFilenamePathsep(input_file);
 | |
| 
 | |
|     //if no directory is specified, by default search for the input file in the results directory
 | |
| //    if (input_file_std.find("/") == input_file_std.npos)
 | |
| //    {
 | |
| //        input_file_std = m_results_directory + input_file_std;
 | |
| //    }
 | |
| 
 | |
|     vector<string> image_codes;
 | |
|     readDetectorResultsFile(input_file_std, image_codes, scores, bounding_boxes);
 | |
| 
 | |
|     convertImageCodesToObdImages(image_codes, images);
 | |
| }
 | |
| 
 | |
| const vector<string>& VocData::getObjectClasses()
 | |
| {
 | |
|     return m_object_classes;
 | |
| }
 | |
| 
 | |
| //string VocData::getResultsDirectory()
 | |
| //{
 | |
| //    return m_results_directory;
 | |
| //}
 | |
| 
 | |
| //---------------------------------------------------------
 | |
| // Protected Functions ------------------------------------
 | |
| //---------------------------------------------------------
 | |
| 
 | |
| static string getVocName( const string& vocPath )
 | |
| {
 | |
|     size_t found = vocPath.rfind( '/' );
 | |
|     if( found == string::npos )
 | |
|     {
 | |
|         found = vocPath.rfind( '\\' );
 | |
|         if( found == string::npos )
 | |
|             return vocPath;
 | |
|     }
 | |
|     return vocPath.substr(found + 1, vocPath.size() - found);
 | |
| }
 | |
| 
 | |
| void VocData::initVoc( const string& vocPath, const bool useTestDataset )
 | |
| {
 | |
|     initVoc2007to2010( vocPath, useTestDataset );
 | |
| }
 | |
| 
 | |
| //Initialize file paths and settings for the VOC 2010 dataset
 | |
| //-----------------------------------------------------------
 | |
| void VocData::initVoc2007to2010( const string& vocPath, const bool useTestDataset )
 | |
| {
 | |
|     //check format of root directory and modify if necessary
 | |
| 
 | |
|     m_vocName = getVocName( vocPath );
 | |
| 
 | |
|     CV_Assert( !m_vocName.compare("VOC2007") || !m_vocName.compare("VOC2008") ||
 | |
|                !m_vocName.compare("VOC2009") || !m_vocName.compare("VOC2010") );
 | |
| 
 | |
|     m_vocPath = checkFilenamePathsep( vocPath, true );
 | |
| 
 | |
|     if (useTestDataset)
 | |
|     {
 | |
|         m_train_set = "trainval";
 | |
|         m_test_set = "test";
 | |
|     } else {
 | |
|         m_train_set = "train";
 | |
|         m_test_set = "val";
 | |
|     }
 | |
| 
 | |
|     // initialize main classification/detection challenge paths
 | |
|     m_annotation_path = m_vocPath + "/Annotations/%s.xml";
 | |
|     m_image_path = m_vocPath + "/JPEGImages/%s.jpg";
 | |
|     m_imageset_path = m_vocPath + "/ImageSets/Main/%s.txt";
 | |
|     m_class_imageset_path = m_vocPath + "/ImageSets/Main/%s_%s.txt";
 | |
| 
 | |
|     //define available object_classes for VOC2010 dataset
 | |
|     m_object_classes.push_back("aeroplane");
 | |
|     m_object_classes.push_back("bicycle");
 | |
|     m_object_classes.push_back("bird");
 | |
|     m_object_classes.push_back("boat");
 | |
|     m_object_classes.push_back("bottle");
 | |
|     m_object_classes.push_back("bus");
 | |
|     m_object_classes.push_back("car");
 | |
|     m_object_classes.push_back("cat");
 | |
|     m_object_classes.push_back("chair");
 | |
|     m_object_classes.push_back("cow");
 | |
|     m_object_classes.push_back("diningtable");
 | |
|     m_object_classes.push_back("dog");
 | |
|     m_object_classes.push_back("horse");
 | |
|     m_object_classes.push_back("motorbike");
 | |
|     m_object_classes.push_back("person");
 | |
|     m_object_classes.push_back("pottedplant");
 | |
|     m_object_classes.push_back("sheep");
 | |
|     m_object_classes.push_back("sofa");
 | |
|     m_object_classes.push_back("train");
 | |
|     m_object_classes.push_back("tvmonitor");
 | |
| 
 | |
|     m_min_overlap = 0.5;
 | |
| 
 | |
|     //up until VOC 2010, ap was calculated by sampling p-r curve, not taking complete curve
 | |
|     m_sampled_ap = ((m_vocName == "VOC2007") || (m_vocName == "VOC2008") || (m_vocName == "VOC2009"));
 | |
| }
 | |
| 
 | |
| //Read a VOC classification ground truth text file for a given object class and dataset
 | |
| //-------------------------------------------------------------------------------------
 | |
| //INPUTS:
 | |
| // - filename           The path of the text file to read
 | |
| //OUTPUTS:
 | |
| // - image_codes        VOC image codes extracted from the GT file in the form 20XX_XXXXXX where the first four
 | |
| //                          digits specify the year of the dataset, and the last group specifies a unique ID
 | |
| // - object_present     For each image in the 'image_codes' array, specifies whether the object class described
 | |
| //                          in the loaded GT file is present or not
 | |
| void VocData::readClassifierGroundTruth(const string& filename, vector<string>& image_codes, vector<char>& object_present)
 | |
| {
 | |
|     image_codes.clear();
 | |
|     object_present.clear();
 | |
| 
 | |
|     std::ifstream gtfile(filename.c_str());
 | |
|     if (!gtfile.is_open())
 | |
|     {
 | |
|         string err_msg = "could not open VOC ground truth textfile '" + filename + "'.";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| 
 | |
|     string line;
 | |
|     string image;
 | |
|     int obj_present = 0;
 | |
|     while (!gtfile.eof())
 | |
|     {
 | |
|         std::getline(gtfile,line);
 | |
|         std::istringstream iss(line);
 | |
|         iss >> image >> obj_present;
 | |
|         if (!iss.fail())
 | |
|         {
 | |
|             image_codes.push_back(image);
 | |
|             object_present.push_back(obj_present == 1);
 | |
|         } else {
 | |
|             if (!gtfile.eof()) CV_Error(CV_StsParseError,"error parsing VOC ground truth textfile.");
 | |
|         }
 | |
|     }
 | |
|     gtfile.close();
 | |
| }
 | |
| 
 | |
| void VocData::readClassifierResultsFile(const string& input_file, vector<string>& image_codes, vector<float>& scores)
 | |
| {
 | |
|     //check if results file exists
 | |
|     std::ifstream result_file(input_file.c_str());
 | |
|     if (result_file.is_open())
 | |
|     {
 | |
|         string line;
 | |
|         string image;
 | |
|         float score;
 | |
|         //read in the results file
 | |
|         while (!result_file.eof())
 | |
|         {
 | |
|             std::getline(result_file,line);
 | |
|             std::istringstream iss(line);
 | |
|             iss >> image >> score;
 | |
|             if (!iss.fail())
 | |
|             {
 | |
|                 image_codes.push_back(image);
 | |
|                 scores.push_back(score);
 | |
|             } else {
 | |
|                 if(!result_file.eof()) CV_Error(CV_StsParseError,"error parsing VOC classifier results file.");
 | |
|             }
 | |
|         }
 | |
|         result_file.close();
 | |
|     } else {
 | |
|         string err_msg = "could not open classifier results file '" + input_file + "' for reading.";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VocData::readDetectorResultsFile(const string& input_file, vector<string>& image_codes, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes)
 | |
| {
 | |
|     image_codes.clear();
 | |
|     scores.clear();
 | |
|     bounding_boxes.clear();
 | |
| 
 | |
|     //check if results file exists
 | |
|     std::ifstream result_file(input_file.c_str());
 | |
|     if (result_file.is_open())
 | |
|     {
 | |
|         string line;
 | |
|         string image;
 | |
|         Rect bounding_box;
 | |
|         float score;
 | |
|         //read in the results file
 | |
|         while (!result_file.eof())
 | |
|         {
 | |
|             std::getline(result_file,line);
 | |
|             std::istringstream iss(line);
 | |
|             iss >> image >> score >> bounding_box.x >> bounding_box.y >> bounding_box.width >> bounding_box.height;
 | |
|             if (!iss.fail())
 | |
|             {
 | |
|                 //convert right and bottom positions to width and height
 | |
|                 bounding_box.width -= bounding_box.x;
 | |
|                 bounding_box.height -= bounding_box.y;
 | |
|                 //convert to 0-indexing
 | |
|                 bounding_box.x -= 1;
 | |
|                 bounding_box.y -= 1;
 | |
|                 //store in output vectors
 | |
|                 /* first check if the current image code has been seen before */
 | |
|                 vector<string>::iterator image_codes_it = std::find(image_codes.begin(),image_codes.end(),image);
 | |
|                 if (image_codes_it == image_codes.end())
 | |
|                 {
 | |
|                     image_codes.push_back(image);
 | |
|                     vector<float> score_vect(1);
 | |
|                     score_vect[0] = score;
 | |
|                     scores.push_back(score_vect);
 | |
|                     vector<Rect> bounding_box_vect(1);
 | |
|                     bounding_box_vect[0] = bounding_box;
 | |
|                     bounding_boxes.push_back(bounding_box_vect);
 | |
|                 } else {
 | |
|                     /* if the image index has been seen before, add the current object below it in the 2D arrays */
 | |
|                     int image_idx = (int)std::distance(image_codes.begin(),image_codes_it);
 | |
|                     scores[image_idx].push_back(score);
 | |
|                     bounding_boxes[image_idx].push_back(bounding_box);
 | |
|                 }
 | |
|             } else {
 | |
|                 if(!result_file.eof()) CV_Error(CV_StsParseError,"error parsing VOC detector results file.");
 | |
|             }
 | |
|         }
 | |
|         result_file.close();
 | |
|     } else {
 | |
|         string err_msg = "could not open detector results file '" + input_file + "' for reading.";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //Read a VOC annotation xml file for a given image
 | |
| //------------------------------------------------
 | |
| //INPUTS:
 | |
| // - filename           The path of the xml file to read
 | |
| //OUTPUTS:
 | |
| // - objects            Array of VocObject describing all object instances present in the given image
 | |
| void VocData::extractVocObjects(const string filename, vector<ObdObject>& objects, vector<VocObjectData>& object_data)
 | |
| {
 | |
| #ifdef PR_DEBUG
 | |
|     int block = 1;
 | |
|     cout << "SAMPLE VOC OBJECT EXTRACTION for " << filename << ":" << endl;
 | |
| #endif
 | |
|     objects.clear();
 | |
|     object_data.clear();
 | |
| 
 | |
|     string contents, object_contents, tag_contents;
 | |
| 
 | |
|     readFileToString(filename, contents);
 | |
| 
 | |
|     //keep on extracting 'object' blocks until no more can be found
 | |
|     if (extractXMLBlock(contents, "annotation", 0, contents) != -1)
 | |
|     {
 | |
|         int searchpos = 0;
 | |
|         searchpos = extractXMLBlock(contents, "object", searchpos, object_contents);
 | |
|         while (searchpos != -1)
 | |
|         {
 | |
| #ifdef PR_DEBUG
 | |
|             cout << "SEARCHPOS:" << searchpos << endl;
 | |
|             cout << "start block " << block << " ---------" << endl;
 | |
|             cout << object_contents << endl;
 | |
|             cout << "end block " << block << " -----------" << endl;
 | |
|             ++block;
 | |
| #endif
 | |
| 
 | |
|             ObdObject object;
 | |
|             VocObjectData object_d;
 | |
| 
 | |
|             //object class -------------
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "name", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing <name> tag in object definition of '" + filename + "'");
 | |
|             object.object_class.swap(tag_contents);
 | |
| 
 | |
|             //object bounding box -------------
 | |
| 
 | |
|             int xmax, xmin, ymax, ymin;
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "xmax", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing <xmax> tag in object definition of '" + filename + "'");
 | |
|             xmax = stringToInteger(tag_contents);
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "xmin", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing <xmin> tag in object definition of '" + filename + "'");
 | |
|             xmin = stringToInteger(tag_contents);
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "ymax", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing <ymax> tag in object definition of '" + filename + "'");
 | |
|             ymax = stringToInteger(tag_contents);
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "ymin", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing <ymin> tag in object definition of '" + filename + "'");
 | |
|             ymin = stringToInteger(tag_contents);
 | |
| 
 | |
|             object.boundingBox.x = xmin-1;      //convert to 0-based indexing
 | |
|             object.boundingBox.width = xmax - xmin;
 | |
|             object.boundingBox.y = ymin-1;
 | |
|             object.boundingBox.height = ymax - ymin;
 | |
| 
 | |
|             CV_Assert(xmin != 0);
 | |
|             CV_Assert(xmax > xmin);
 | |
|             CV_Assert(ymin != 0);
 | |
|             CV_Assert(ymax > ymin);
 | |
| 
 | |
| 
 | |
|             //object tags -------------
 | |
| 
 | |
|             if (extractXMLBlock(object_contents, "difficult", 0, tag_contents) != -1)
 | |
|             {
 | |
|                 object_d.difficult = (tag_contents == "1");
 | |
|             } else object_d.difficult = false;
 | |
|             if (extractXMLBlock(object_contents, "occluded", 0, tag_contents) != -1)
 | |
|             {
 | |
|                 object_d.occluded = (tag_contents == "1");
 | |
|             } else object_d.occluded = false;
 | |
|             if (extractXMLBlock(object_contents, "truncated", 0, tag_contents) != -1)
 | |
|             {
 | |
|                 object_d.truncated = (tag_contents == "1");
 | |
|             } else object_d.truncated = false;
 | |
|             if (extractXMLBlock(object_contents, "pose", 0, tag_contents) != -1)
 | |
|             {
 | |
|                 if (tag_contents == "Frontal") object_d.pose = CV_VOC_POSE_FRONTAL;
 | |
|                 if (tag_contents == "Rear") object_d.pose = CV_VOC_POSE_REAR;
 | |
|                 if (tag_contents == "Left") object_d.pose = CV_VOC_POSE_LEFT;
 | |
|                 if (tag_contents == "Right") object_d.pose = CV_VOC_POSE_RIGHT;
 | |
|             }
 | |
| 
 | |
|             //add to array of objects
 | |
|             objects.push_back(object);
 | |
|             object_data.push_back(object_d);
 | |
| 
 | |
|             //extract next 'object' block from file if it exists
 | |
|             searchpos = extractXMLBlock(contents, "object", searchpos, object_contents);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Converts an image identifier string in the format YYYY_XXXXXX to a single index integer of form XXXXXXYYYY
 | |
| //where Y represents a year and returns the image path
 | |
| //----------------------------------------------------------------------------------------------------------
 | |
| string VocData::getImagePath(const string& input_str)
 | |
| {
 | |
|     string path = m_image_path;
 | |
|     path.replace(path.find("%s"),2,input_str);
 | |
|     return path;
 | |
| }
 | |
| 
 | |
| //Tests two boundary boxes for overlap (using the intersection over union metric) and returns the overlap if the objects
 | |
| //defined by the two bounding boxes are considered to be matched according to the criterion outlined in
 | |
| //the VOC documentation [namely intersection/union > some threshold] otherwise returns -1.0 (no match)
 | |
| //----------------------------------------------------------------------------------------------------------
 | |
| float VocData::testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth)
 | |
| {
 | |
|     int detection_x2 = detection.x + detection.width;
 | |
|     int detection_y2 = detection.y + detection.height;
 | |
|     int ground_truth_x2 = ground_truth.x + ground_truth.width;
 | |
|     int ground_truth_y2 = ground_truth.y + ground_truth.height;
 | |
|     //first calculate the boundaries of the intersection of the rectangles
 | |
|     int intersection_x = std::max(detection.x, ground_truth.x); //rightmost left
 | |
|     int intersection_y = std::max(detection.y, ground_truth.y); //bottommost top
 | |
|     int intersection_x2 = std::min(detection_x2, ground_truth_x2); //leftmost right
 | |
|     int intersection_y2 = std::min(detection_y2, ground_truth_y2); //topmost bottom
 | |
|     //then calculate the width and height of the intersection rect
 | |
|     int intersection_width = intersection_x2 - intersection_x + 1;
 | |
|     int intersection_height = intersection_y2 - intersection_y + 1;
 | |
|     //if there is no overlap then return false straight away
 | |
|     if ((intersection_width <= 0) || (intersection_height <= 0)) return -1.0;
 | |
|     //otherwise calculate the intersection
 | |
|     int intersection_area = intersection_width*intersection_height;
 | |
| 
 | |
|     //now calculate the union
 | |
|     int union_area = (detection.width+1)*(detection.height+1) + (ground_truth.width+1)*(ground_truth.height+1) - intersection_area;
 | |
| 
 | |
|     //calculate the intersection over union and use as threshold as per VOC documentation
 | |
|     float overlap = static_cast<float>(intersection_area)/static_cast<float>(union_area);
 | |
|     if (overlap > m_min_overlap)
 | |
|     {
 | |
|         return overlap;
 | |
|     } else {
 | |
|         return -1.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Extracts the object class and dataset from the filename of a VOC standard results text file, which takes
 | |
| //the format 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'
 | |
| //----------------------------------------------------------------------------------------------------------
 | |
| void VocData::extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name)
 | |
| {
 | |
|     string input_file_std = checkFilenamePathsep(input_file);
 | |
| 
 | |
|     size_t fnamestart = input_file_std.rfind("/");
 | |
|     size_t fnameend = input_file_std.rfind(".txt");
 | |
| 
 | |
|     if ((fnamestart == input_file_std.npos) || (fnameend == input_file_std.npos))
 | |
|         CV_Error(CV_StsError,"Could not extract filename of results file.");
 | |
| 
 | |
|     ++fnamestart;
 | |
|     if (fnamestart >= fnameend)
 | |
|         CV_Error(CV_StsError,"Could not extract filename of results file.");
 | |
| 
 | |
|     //extract dataset and class names, triggering exception if the filename format is not correct
 | |
|     string filename = input_file_std.substr(fnamestart, fnameend-fnamestart);
 | |
|     size_t datasetstart = filename.find("_");
 | |
|     datasetstart = filename.find("_",datasetstart+1);
 | |
|     size_t classstart = filename.find("_",datasetstart+1);
 | |
|     //allow for appended index after a further '_' by discarding this part if it exists
 | |
|     size_t classend = filename.find("_",classstart+1);
 | |
|     if (classend == filename.npos) classend = filename.size();
 | |
|     if ((datasetstart == filename.npos) || (classstart == filename.npos))
 | |
|         CV_Error(CV_StsError,"Error parsing results filename. Is it in standard format of 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'?");
 | |
|     ++datasetstart;
 | |
|     ++classstart;
 | |
|     if (((datasetstart-classstart) < 1) || ((classend-datasetstart) < 1))
 | |
|         CV_Error(CV_StsError,"Error parsing results filename. Is it in standard format of 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'?");
 | |
| 
 | |
|     dataset_name = filename.substr(datasetstart,classstart-datasetstart-1);
 | |
|     class_name = filename.substr(classstart,classend-classstart);
 | |
| }
 | |
| 
 | |
| bool VocData::getClassifierGroundTruthImage(const string& obj_class, const string& id)
 | |
| {
 | |
|     /* if the classifier ground truth data for all images of the current class has not been loaded yet, load it now */
 | |
|     if (m_classifier_gt_all_ids.empty() || (m_classifier_gt_class != obj_class))
 | |
|     {
 | |
|         m_classifier_gt_all_ids.clear();
 | |
|         m_classifier_gt_all_present.clear();
 | |
|         m_classifier_gt_class = obj_class;
 | |
|         for (int i=0; i<2; ++i) //run twice (once over test set and once over training set)
 | |
|         {
 | |
|             //generate the filename of the classification ground-truth textfile for the object class
 | |
|             string gtFilename = m_class_imageset_path;
 | |
|             gtFilename.replace(gtFilename.find("%s"),2,obj_class);
 | |
|             if (i == 0)
 | |
|             {
 | |
|                 gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
 | |
|             } else {
 | |
|                 gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
 | |
|             }
 | |
| 
 | |
|             //parse the ground truth file, storing in two separate vectors
 | |
|             //for the image code and the ground truth value
 | |
|             vector<string> image_codes;
 | |
|             vector<char> object_present;
 | |
|             readClassifierGroundTruth(gtFilename, image_codes, object_present);
 | |
| 
 | |
|             m_classifier_gt_all_ids.insert(m_classifier_gt_all_ids.end(),image_codes.begin(),image_codes.end());
 | |
|             m_classifier_gt_all_present.insert(m_classifier_gt_all_present.end(),object_present.begin(),object_present.end());
 | |
| 
 | |
|             CV_Assert(m_classifier_gt_all_ids.size() == m_classifier_gt_all_present.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //search for the image code
 | |
|     vector<string>::iterator it = find (m_classifier_gt_all_ids.begin(), m_classifier_gt_all_ids.end(), id);
 | |
|     if (it != m_classifier_gt_all_ids.end())
 | |
|     {
 | |
|         //image found, so return corresponding ground truth
 | |
|         return m_classifier_gt_all_present[std::distance(m_classifier_gt_all_ids.begin(),it)] != 0;
 | |
|     } else {
 | |
|         string err_msg = "could not find classifier ground truth for image '" + id + "' and class '" + obj_class + "'";
 | |
|         CV_Error(CV_StsError,err_msg.c_str());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //-------------------------------------------------------------------
 | |
| // Protected Functions (utility) ------------------------------------
 | |
| //-------------------------------------------------------------------
 | |
| 
 | |
| //returns a vector containing indexes of the input vector in sorted ascending/descending order
 | |
| void VocData::getSortOrder(const vector<float>& values, vector<size_t>& order, bool descending)
 | |
| {
 | |
|     /* 1. store sorting order in 'order_pair' */
 | |
|     vector<std::pair<size_t, vector<float>::const_iterator> > order_pair(values.size());
 | |
| 
 | |
|     size_t n = 0;
 | |
|     for (vector<float>::const_iterator it = values.begin(); it != values.end(); ++it, ++n)
 | |
|         order_pair[n] = make_pair(n, it);
 | |
| 
 | |
|     std::sort(order_pair.begin(),order_pair.end(),orderingSorter());
 | |
|     if (descending == false) std::reverse(order_pair.begin(),order_pair.end());
 | |
| 
 | |
|     vector<size_t>(order_pair.size()).swap(order);
 | |
|     for (size_t i = 0; i < order_pair.size(); ++i)
 | |
|     {
 | |
|         order[i] = order_pair[i].first;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VocData::readFileToString(const string filename, string& file_contents)
 | |
| {
 | |
|     std::ifstream ifs(filename.c_str());
 | |
|     if (!ifs.is_open()) CV_Error(CV_StsError,"could not open text file");
 | |
| 
 | |
|     stringstream oss;
 | |
|     oss << ifs.rdbuf();
 | |
| 
 | |
|     file_contents = oss.str();
 | |
| }
 | |
| 
 | |
| int VocData::stringToInteger(const string input_str)
 | |
| {
 | |
|     int result = 0;
 | |
| 
 | |
|     stringstream ss(input_str);
 | |
|     if ((ss >> result).fail())
 | |
|     {
 | |
|         CV_Error(CV_StsBadArg,"could not perform string to integer conversion");
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| string VocData::integerToString(const int input_int)
 | |
| {
 | |
|     string result;
 | |
| 
 | |
|     stringstream ss;
 | |
|     if ((ss << input_int).fail())
 | |
|     {
 | |
|         CV_Error(CV_StsBadArg,"could not perform integer to string conversion");
 | |
|     }
 | |
|     result = ss.str();
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| string VocData::checkFilenamePathsep( const string filename, bool add_trailing_slash )
 | |
| {
 | |
|     string filename_new = filename;
 | |
| 
 | |
|     size_t pos = filename_new.find("\\\\");
 | |
|     while (pos != filename_new.npos)
 | |
|     {
 | |
|         filename_new.replace(pos,2,"/");
 | |
|         pos = filename_new.find("\\\\", pos);
 | |
|     }
 | |
|     pos = filename_new.find("\\");
 | |
|     while (pos != filename_new.npos)
 | |
|     {
 | |
|         filename_new.replace(pos,1,"/");
 | |
|         pos = filename_new.find("\\", pos);
 | |
|     }
 | |
|     if (add_trailing_slash)
 | |
|     {
 | |
|         //add training slash if this is missing
 | |
|         if (filename_new.rfind("/") != filename_new.length()-1) filename_new += "/";
 | |
|     }
 | |
| 
 | |
|     return filename_new;
 | |
| }
 | |
| 
 | |
| void VocData::convertImageCodesToObdImages(const vector<string>& image_codes, vector<ObdImage>& images)
 | |
| {
 | |
|     images.clear();
 | |
|     images.reserve(image_codes.size());
 | |
| 
 | |
|     string path;
 | |
|     //transfer to output arrays
 | |
|     for (size_t i = 0; i < image_codes.size(); ++i)
 | |
|     {
 | |
|         //generate image path and indices from extracted string code
 | |
|         path = getImagePath(image_codes[i]);
 | |
|         images.push_back(ObdImage(image_codes[i], path));
 | |
|     }
 | |
| }
 | |
| 
 | |
| //Extract text from within a given tag from an XML file
 | |
| //-----------------------------------------------------
 | |
| //INPUTS:
 | |
| // - src            XML source file
 | |
| // - tag            XML tag delimiting block to extract
 | |
| // - searchpos      position within src at which to start search
 | |
| //OUTPUTS:
 | |
| // - tag_contents   text extracted between <tag> and </tag> tags
 | |
| //RETURN VALUE:
 | |
| // - the position of the final character extracted in tag_contents within src
 | |
| //      (can be used to call extractXMLBlock recursively to extract multiple blocks)
 | |
| //      returns -1 if the tag could not be found
 | |
| int VocData::extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents)
 | |
| {
 | |
|     size_t startpos, next_startpos, endpos;
 | |
|     int embed_count = 1;
 | |
| 
 | |
|     //find position of opening tag
 | |
|     startpos = src.find("<" + tag + ">", searchpos);
 | |
|     if (startpos == string::npos) return -1;
 | |
| 
 | |
|     //initialize endpos -
 | |
|     // start searching for end tag anywhere after opening tag
 | |
|     endpos = startpos;
 | |
| 
 | |
|     //find position of next opening tag
 | |
|     next_startpos = src.find("<" + tag + ">", startpos+1);
 | |
| 
 | |
|     //match opening tags with closing tags, and only
 | |
|     //accept final closing tag of same level as original
 | |
|     //opening tag
 | |
|     while (embed_count > 0)
 | |
|     {
 | |
|         endpos = src.find("</" + tag + ">", endpos+1);
 | |
|         if (endpos == string::npos) return -1;
 | |
| 
 | |
|         //the next code is only executed if there are embedded tags with the same name
 | |
|         if (next_startpos != string::npos)
 | |
|         {
 | |
|             while (next_startpos<endpos)
 | |
|             {
 | |
|                 //counting embedded start tags
 | |
|                 ++embed_count;
 | |
|                 next_startpos = src.find("<" + tag + ">", next_startpos+1);
 | |
|                 if (next_startpos == string::npos) break;
 | |
|             }
 | |
|         }
 | |
|         //passing end tag so decrement nesting level
 | |
|         --embed_count;
 | |
|     }
 | |
| 
 | |
|     //finally, extract the tag region
 | |
|     startpos += tag.length() + 2;
 | |
|     if (startpos > src.length()) return -1;
 | |
|     if (endpos > src.length()) return -1;
 | |
|     tag_contents = src.substr(startpos,endpos-startpos);
 | |
|     return static_cast<int>(endpos);
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                            Sample on image classification                             *
 | |
| \****************************************************************************************/
 | |
| //
 | |
| // This part of the code was a little refactor
 | |
| //
 | |
| struct DDMParams
 | |
| {
 | |
|     DDMParams() : detectorType("SURF"), descriptorType("SURF"), matcherType("BruteForce") {}
 | |
|     DDMParams( const string _detectorType, const string _descriptorType, const string& _matcherType ) :
 | |
|         detectorType(_detectorType), descriptorType(_descriptorType), matcherType(_matcherType){}
 | |
|     void read( const FileNode& fn )
 | |
|     {
 | |
|         fn["detectorType"] >> detectorType;
 | |
|         fn["descriptorType"] >> descriptorType;
 | |
|         fn["matcherType"] >> matcherType;
 | |
|     }
 | |
|     void write( FileStorage& fs ) const
 | |
|     {
 | |
|         fs << "detectorType" << detectorType;
 | |
|         fs << "descriptorType" << descriptorType;
 | |
|         fs << "matcherType" << matcherType;
 | |
|     }
 | |
|     void print() const
 | |
|     {
 | |
|         cout << "detectorType: " << detectorType << endl;
 | |
|         cout << "descriptorType: " << descriptorType << endl;
 | |
|         cout << "matcherType: " << matcherType << endl;
 | |
|     }
 | |
| 
 | |
|     string detectorType;
 | |
|     string descriptorType;
 | |
|     string matcherType;
 | |
| };
 | |
| 
 | |
| struct VocabTrainParams
 | |
| {
 | |
|     VocabTrainParams() : trainObjClass("chair"), vocabSize(1000), memoryUse(200), descProportion(0.3f) {}
 | |
|     VocabTrainParams( const string _trainObjClass, size_t _vocabSize, size_t _memoryUse, float _descProportion ) :
 | |
|             trainObjClass(_trainObjClass), vocabSize((int)_vocabSize), memoryUse((int)_memoryUse), descProportion(_descProportion) {}
 | |
|     void read( const FileNode& fn )
 | |
|     {
 | |
|         fn["trainObjClass"] >> trainObjClass;
 | |
|         fn["vocabSize"] >> vocabSize;
 | |
|         fn["memoryUse"] >> memoryUse;
 | |
|         fn["descProportion"] >> descProportion;
 | |
|     }
 | |
|     void write( FileStorage& fs ) const
 | |
|     {
 | |
|         fs << "trainObjClass" << trainObjClass;
 | |
|         fs << "vocabSize" << vocabSize;
 | |
|         fs << "memoryUse" << memoryUse;
 | |
|         fs << "descProportion" << descProportion;
 | |
|     }
 | |
|     void print() const
 | |
|     {
 | |
|         cout << "trainObjClass: " << trainObjClass << endl;
 | |
|         cout << "vocabSize: " << vocabSize << endl;
 | |
|         cout << "memoryUse: " << memoryUse << endl;
 | |
|         cout << "descProportion: " << descProportion << endl;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     string trainObjClass; // Object class used for training visual vocabulary.
 | |
|                           // It shouldn't matter which object class is specified here - visual vocab will still be the same.
 | |
|     int vocabSize; //number of visual words in vocabulary to train
 | |
|     int memoryUse; // Memory to preallocate (in MB) when training vocab.
 | |
|                    // Change this depending on the size of the dataset/available memory.
 | |
|     float descProportion; // Specifies the number of descriptors to use from each image as a proportion of the total num descs.
 | |
| };
 | |
| 
 | |
| struct SVMTrainParamsExt
 | |
| {
 | |
|     SVMTrainParamsExt() : descPercent(0.5f), targetRatio(0.4f), balanceClasses(true) {}
 | |
|     SVMTrainParamsExt( float _descPercent, float _targetRatio, bool _balanceClasses ) :
 | |
|             descPercent(_descPercent), targetRatio(_targetRatio), balanceClasses(_balanceClasses) {}
 | |
|     void read( const FileNode& fn )
 | |
|     {
 | |
|         fn["descPercent"] >> descPercent;
 | |
|         fn["targetRatio"] >> targetRatio;
 | |
|         fn["balanceClasses"] >> balanceClasses;
 | |
|     }
 | |
|     void write( FileStorage& fs ) const
 | |
|     {
 | |
|         fs << "descPercent" << descPercent;
 | |
|         fs << "targetRatio" << targetRatio;
 | |
|         fs << "balanceClasses" << balanceClasses;
 | |
|     }
 | |
|     void print() const
 | |
|     {
 | |
|         cout << "descPercent: " << descPercent << endl;
 | |
|         cout << "targetRatio: " << targetRatio << endl;
 | |
|         cout << "balanceClasses: " << balanceClasses << endl;
 | |
|     }
 | |
| 
 | |
|     float descPercent; // Percentage of extracted descriptors to use for training.
 | |
|     float targetRatio; // Try to get this ratio of positive to negative samples (minimum).
 | |
|     bool balanceClasses;    // Balance class weights by number of samples in each (if true cSvmTrainTargetRatio is ignored).
 | |
| };
 | |
| 
 | |
| static void readUsedParams( const FileNode& fn, string& vocName, DDMParams& ddmParams, VocabTrainParams& vocabTrainParams, SVMTrainParamsExt& svmTrainParamsExt )
 | |
| {
 | |
|     fn["vocName"] >> vocName;
 | |
| 
 | |
|     FileNode currFn = fn;
 | |
| 
 | |
|     currFn = fn["ddmParams"];
 | |
|     ddmParams.read( currFn );
 | |
| 
 | |
|     currFn = fn["vocabTrainParams"];
 | |
|     vocabTrainParams.read( currFn );
 | |
| 
 | |
|     currFn = fn["svmTrainParamsExt"];
 | |
|     svmTrainParamsExt.read( currFn );
 | |
| }
 | |
| 
 | |
| static void writeUsedParams( FileStorage& fs, const string& vocName, const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams, const SVMTrainParamsExt& svmTrainParamsExt )
 | |
| {
 | |
|     fs << "vocName" << vocName;
 | |
| 
 | |
|     fs << "ddmParams" << "{";
 | |
|     ddmParams.write(fs);
 | |
|     fs << "}";
 | |
| 
 | |
|     fs << "vocabTrainParams" << "{";
 | |
|     vocabTrainParams.write(fs);
 | |
|     fs << "}";
 | |
| 
 | |
|     fs << "svmTrainParamsExt" << "{";
 | |
|     svmTrainParamsExt.write(fs);
 | |
|     fs << "}";
 | |
| }
 | |
| 
 | |
| static void printUsedParams( const string& vocPath, const string& resDir,
 | |
|                       const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams,
 | |
|                       const SVMTrainParamsExt& svmTrainParamsExt )
 | |
| {
 | |
|     cout << "CURRENT CONFIGURATION" << endl;
 | |
|     cout << "----------------------------------------------------------------" << endl;
 | |
|     cout << "vocPath: " << vocPath << endl;
 | |
|     cout << "resDir: " << resDir << endl;
 | |
|     cout << endl; ddmParams.print();
 | |
|     cout << endl; vocabTrainParams.print();
 | |
|     cout << endl; svmTrainParamsExt.print();
 | |
|     cout << "----------------------------------------------------------------" << endl << endl;
 | |
| }
 | |
| 
 | |
| static bool readVocabulary( const string& filename, Mat& vocabulary )
 | |
| {
 | |
|     cout << "Reading vocabulary...";
 | |
|     FileStorage fs( filename, FileStorage::READ );
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs["vocabulary"] >> vocabulary;
 | |
|         cout << "done" << endl;
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool writeVocabulary( const string& filename, const Mat& vocabulary )
 | |
| {
 | |
|     cout << "Saving vocabulary..." << endl;
 | |
|     FileStorage fs( filename, FileStorage::WRITE );
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs << "vocabulary" << vocabulary;
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static Mat trainVocabulary( const string& filename, VocData& vocData, const VocabTrainParams& trainParams,
 | |
|                      const Ptr<FeatureDetector>& fdetector, const Ptr<DescriptorExtractor>& dextractor )
 | |
| {
 | |
|     Mat vocabulary;
 | |
|     if( !readVocabulary( filename, vocabulary) )
 | |
|     {
 | |
|         CV_Assert( dextractor->descriptorType() == CV_32FC1 );
 | |
|         const int elemSize = CV_ELEM_SIZE(dextractor->descriptorType());
 | |
|         const int descByteSize = dextractor->descriptorSize() * elemSize;
 | |
|         const int bytesInMB = 1048576;
 | |
|         const int maxDescCount = (trainParams.memoryUse * bytesInMB) / descByteSize; // Total number of descs to use for training.
 | |
| 
 | |
|         cout << "Extracting VOC data..." << endl;
 | |
|         vector<ObdImage> images;
 | |
|         vector<char> objectPresent;
 | |
|         vocData.getClassImages( trainParams.trainObjClass, CV_OBD_TRAIN, images, objectPresent );
 | |
| 
 | |
|         cout << "Computing descriptors..." << endl;
 | |
|         RNG& rng = theRNG();
 | |
|         TermCriteria terminate_criterion;
 | |
|         terminate_criterion.epsilon = FLT_EPSILON;
 | |
|         BOWKMeansTrainer bowTrainer( trainParams.vocabSize, terminate_criterion, 3, KMEANS_PP_CENTERS );
 | |
| 
 | |
|         while( images.size() > 0 )
 | |
|         {
 | |
|             if( bowTrainer.descriptorsCount() > maxDescCount )
 | |
|             {
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|                 cout << "Breaking due to full memory ( descriptors count = " << bowTrainer.descriptorsCount()
 | |
|                         << "; descriptor size in bytes = " << descByteSize << "; all used memory = "
 | |
|                         << bowTrainer.descriptorsCount()*descByteSize << endl;
 | |
| #endif
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // Randomly pick an image from the dataset which hasn't yet been seen
 | |
|             // and compute the descriptors from that image.
 | |
|             int randImgIdx = rng( (unsigned)images.size() );
 | |
|             Mat colorImage = imread( images[randImgIdx].path );
 | |
|             vector<KeyPoint> imageKeypoints;
 | |
|             fdetector->detect( colorImage, imageKeypoints );
 | |
|             Mat imageDescriptors;
 | |
|             dextractor->compute( colorImage, imageKeypoints, imageDescriptors );
 | |
| 
 | |
|             //check that there were descriptors calculated for the current image
 | |
|             if( !imageDescriptors.empty() )
 | |
|             {
 | |
|                 int descCount = imageDescriptors.rows;
 | |
|                 // Extract trainParams.descProportion descriptors from the image, breaking if the 'allDescriptors' matrix becomes full
 | |
|                 int descsToExtract = static_cast<int>(trainParams.descProportion * static_cast<float>(descCount));
 | |
|                 // Fill mask of used descriptors
 | |
|                 vector<char> usedMask( descCount, false );
 | |
|                 fill( usedMask.begin(), usedMask.begin() + descsToExtract, true );
 | |
|                 for( int i = 0; i < descCount; i++ )
 | |
|                 {
 | |
|                     int i1 = rng(descCount), i2 = rng(descCount);
 | |
|                     char tmp = usedMask[i1]; usedMask[i1] = usedMask[i2]; usedMask[i2] = tmp;
 | |
|                 }
 | |
| 
 | |
|                 for( int i = 0; i < descCount; i++ )
 | |
|                 {
 | |
|                     if( usedMask[i] && bowTrainer.descriptorsCount() < maxDescCount )
 | |
|                         bowTrainer.add( imageDescriptors.row(i) );
 | |
|                 }
 | |
|             }
 | |
| 
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|             cout << images.size() << " images left, " << images[randImgIdx].id << " processed - "
 | |
|                     <</* descs_extracted << "/" << image_descriptors.rows << " extracted - " << */
 | |
|                     cvRound((static_cast<double>(bowTrainer.descriptorsCount())/static_cast<double>(maxDescCount))*100.0)
 | |
|                     << " % memory used" << ( imageDescriptors.empty() ? " -> no descriptors extracted, skipping" : "") << endl;
 | |
| #endif
 | |
| 
 | |
|             // Delete the current element from images so it is not added again
 | |
|             images.erase( images.begin() + randImgIdx );
 | |
|         }
 | |
| 
 | |
|         cout << "Maximum allowed descriptor count: " << maxDescCount << ", Actual descriptor count: " << bowTrainer.descriptorsCount() << endl;
 | |
| 
 | |
|         cout << "Training vocabulary..." << endl;
 | |
|         vocabulary = bowTrainer.cluster();
 | |
| 
 | |
|         if( !writeVocabulary(filename, vocabulary) )
 | |
|         {
 | |
|             cout << "Error: file " << filename << " can not be opened to write" << endl;
 | |
|             exit(-1);
 | |
|         }
 | |
|     }
 | |
|     return vocabulary;
 | |
| }
 | |
| 
 | |
| static bool readBowImageDescriptor( const string& file, Mat& bowImageDescriptor )
 | |
| {
 | |
|     FileStorage fs( file, FileStorage::READ );
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs["imageDescriptor"] >> bowImageDescriptor;
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool writeBowImageDescriptor( const string& file, const Mat& bowImageDescriptor )
 | |
| {
 | |
|     FileStorage fs( file, FileStorage::WRITE );
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs << "imageDescriptor" << bowImageDescriptor;
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Load in the bag of words vectors for a set of images, from file if possible
 | |
| static void calculateImageDescriptors( const vector<ObdImage>& images, vector<Mat>& imageDescriptors,
 | |
|                                 Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
 | |
|                                 const string& resPath )
 | |
| {
 | |
|     CV_Assert( !bowExtractor->getVocabulary().empty() );
 | |
|     imageDescriptors.resize( images.size() );
 | |
| 
 | |
|     for( size_t i = 0; i < images.size(); i++ )
 | |
|     {
 | |
|         string filename = resPath + bowImageDescriptorsDir + "/" + images[i].id + ".xml.gz";
 | |
|         if( readBowImageDescriptor( filename, imageDescriptors[i] ) )
 | |
|         {
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|             cout << "Loaded bag of word vector for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << endl;
 | |
| #endif
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             Mat colorImage = imread( images[i].path );
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|             cout << "Computing descriptors for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << flush;
 | |
| #endif
 | |
|             vector<KeyPoint> keypoints;
 | |
|             fdetector->detect( colorImage, keypoints );
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|                 cout << " + generating BoW vector" << std::flush;
 | |
| #endif
 | |
|             bowExtractor->compute( colorImage, keypoints, imageDescriptors[i] );
 | |
| #ifdef DEBUG_DESC_PROGRESS
 | |
|             cout << " ...DONE " << static_cast<int>(static_cast<float>(i+1)/static_cast<float>(images.size())*100.0)
 | |
|                  << " % complete" << endl;
 | |
| #endif
 | |
|             if( !imageDescriptors[i].empty() )
 | |
|             {
 | |
|                 if( !writeBowImageDescriptor( filename, imageDescriptors[i] ) )
 | |
|                 {
 | |
|                     cout << "Error: file " << filename << "can not be opened to write bow image descriptor" << endl;
 | |
|                     exit(-1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void removeEmptyBowImageDescriptors( vector<ObdImage>& images, vector<Mat>& bowImageDescriptors,
 | |
|                                      vector<char>& objectPresent )
 | |
| {
 | |
|     CV_Assert( !images.empty() );
 | |
|     for( int i = (int)images.size() - 1; i >= 0; i-- )
 | |
|     {
 | |
|         bool res = bowImageDescriptors[i].empty();
 | |
|         if( res )
 | |
|         {
 | |
|             cout << "Removing image " << images[i].id << " due to no descriptors..." << endl;
 | |
|             images.erase( images.begin() + i );
 | |
|             bowImageDescriptors.erase( bowImageDescriptors.begin() + i );
 | |
|             objectPresent.erase( objectPresent.begin() + i );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void removeBowImageDescriptorsByCount( vector<ObdImage>& images, vector<Mat> bowImageDescriptors, vector<char> objectPresent,
 | |
|                                        const SVMTrainParamsExt& svmParamsExt, int descsToDelete )
 | |
| {
 | |
|     RNG& rng = theRNG();
 | |
|     int pos_ex = (int)std::count( objectPresent.begin(), objectPresent.end(), (char)1 );
 | |
|     int neg_ex = (int)std::count( objectPresent.begin(), objectPresent.end(), (char)0 );
 | |
| 
 | |
|     while( descsToDelete != 0 )
 | |
|     {
 | |
|         int randIdx = rng((unsigned)images.size());
 | |
| 
 | |
|         // Prefer positive training examples according to svmParamsExt.targetRatio if required
 | |
|         if( objectPresent[randIdx] )
 | |
|         {
 | |
|             if( (static_cast<float>(pos_ex)/static_cast<float>(neg_ex+pos_ex)  < svmParamsExt.targetRatio) &&
 | |
|                 (neg_ex > 0) && (svmParamsExt.balanceClasses == false) )
 | |
|             { continue; }
 | |
|             else
 | |
|             { pos_ex--; }
 | |
|         }
 | |
|         else
 | |
|         { neg_ex--; }
 | |
| 
 | |
|         images.erase( images.begin() + randIdx );
 | |
|         bowImageDescriptors.erase( bowImageDescriptors.begin() + randIdx );
 | |
|         objectPresent.erase( objectPresent.begin() + randIdx );
 | |
| 
 | |
|         descsToDelete--;
 | |
|     }
 | |
|     CV_Assert( bowImageDescriptors.size() == objectPresent.size() );
 | |
| }
 | |
| 
 | |
| static void setSVMParams( CvSVMParams& svmParams, CvMat& class_wts_cv, const Mat& responses, bool balanceClasses )
 | |
| {
 | |
|     int pos_ex = countNonZero(responses == 1);
 | |
|     int neg_ex = countNonZero(responses == -1);
 | |
|     cout << pos_ex << " positive training samples; " << neg_ex << " negative training samples" << endl;
 | |
| 
 | |
|     svmParams.svm_type = CvSVM::C_SVC;
 | |
|     svmParams.kernel_type = CvSVM::RBF;
 | |
|     if( balanceClasses )
 | |
|     {
 | |
|         Mat class_wts( 2, 1, CV_32FC1 );
 | |
|         // The first training sample determines the '+1' class internally, even if it is negative,
 | |
|         // so store whether this is the case so that the class weights can be reversed accordingly.
 | |
|         bool reversed_classes = (responses.at<float>(0) < 0.f);
 | |
|         if( reversed_classes == false )
 | |
|         {
 | |
|             class_wts.at<float>(0) = static_cast<float>(pos_ex)/static_cast<float>(pos_ex+neg_ex); // weighting for costs of positive class + 1 (i.e. cost of false positive - larger gives greater cost)
 | |
|             class_wts.at<float>(1) = static_cast<float>(neg_ex)/static_cast<float>(pos_ex+neg_ex); // weighting for costs of negative class - 1 (i.e. cost of false negative)
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             class_wts.at<float>(0) = static_cast<float>(neg_ex)/static_cast<float>(pos_ex+neg_ex);
 | |
|             class_wts.at<float>(1) = static_cast<float>(pos_ex)/static_cast<float>(pos_ex+neg_ex);
 | |
|         }
 | |
|         class_wts_cv = class_wts;
 | |
|         svmParams.class_weights = &class_wts_cv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void setSVMTrainAutoParams( CvParamGrid& c_grid, CvParamGrid& gamma_grid,
 | |
|                             CvParamGrid& p_grid, CvParamGrid& nu_grid,
 | |
|                             CvParamGrid& coef_grid, CvParamGrid& degree_grid )
 | |
| {
 | |
|     c_grid = CvSVM::get_default_grid(CvSVM::C);
 | |
| 
 | |
|     gamma_grid = CvSVM::get_default_grid(CvSVM::GAMMA);
 | |
| 
 | |
|     p_grid = CvSVM::get_default_grid(CvSVM::P);
 | |
|     p_grid.step = 0;
 | |
| 
 | |
|     nu_grid = CvSVM::get_default_grid(CvSVM::NU);
 | |
|     nu_grid.step = 0;
 | |
| 
 | |
|     coef_grid = CvSVM::get_default_grid(CvSVM::COEF);
 | |
|     coef_grid.step = 0;
 | |
| 
 | |
|     degree_grid = CvSVM::get_default_grid(CvSVM::DEGREE);
 | |
|     degree_grid.step = 0;
 | |
| }
 | |
| 
 | |
| #if defined HAVE_OPENCV_OCL && _OCL_SVM_
 | |
| static void trainSVMClassifier( cv::ocl::CvSVM_OCL& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
 | |
|                                Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
 | |
|                                const string& resPath )
 | |
| #else
 | |
| static void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
 | |
|                          Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
 | |
|                          const string& resPath )
 | |
| #endif
 | |
| {
 | |
|     /* first check if a previously trained svm for the current class has been saved to file */
 | |
|     string svmFilename = resPath + svmsDir + "/" + objClassName + ".xml.gz";
 | |
| 
 | |
|     FileStorage fs( svmFilename, FileStorage::READ);
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         cout << "*** LOADING SVM CLASSIFIER FOR CLASS " << objClassName << " ***" << endl;
 | |
|         svm.load( svmFilename.c_str() );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cout << "*** TRAINING CLASSIFIER FOR CLASS " << objClassName << " ***" << endl;
 | |
|         cout << "CALCULATING BOW VECTORS FOR TRAINING SET OF " << objClassName << "..." << endl;
 | |
| 
 | |
|         // Get classification ground truth for images in the training set
 | |
|         vector<ObdImage> images;
 | |
|         vector<Mat> bowImageDescriptors;
 | |
|         vector<char> objectPresent;
 | |
|         vocData.getClassImages( objClassName, CV_OBD_TRAIN, images, objectPresent );
 | |
| 
 | |
|         // Compute the bag of words vector for each image in the training set.
 | |
|         calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath );
 | |
| 
 | |
|         // Remove any images for which descriptors could not be calculated
 | |
|         removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent );
 | |
| 
 | |
|         CV_Assert( svmParamsExt.descPercent > 0.f && svmParamsExt.descPercent <= 1.f );
 | |
|         if( svmParamsExt.descPercent < 1.f )
 | |
|         {
 | |
|             int descsToDelete = static_cast<int>(static_cast<float>(images.size())*(1.0-svmParamsExt.descPercent));
 | |
| 
 | |
|             cout << "Using " << (images.size() - descsToDelete) << " of " << images.size() <<
 | |
|                     " descriptors for training (" << svmParamsExt.descPercent*100.0 << " %)" << endl;
 | |
|             removeBowImageDescriptorsByCount( images, bowImageDescriptors, objectPresent, svmParamsExt, descsToDelete );
 | |
|         }
 | |
| 
 | |
|         // Prepare the input matrices for SVM training.
 | |
|         Mat trainData( (int)images.size(), bowExtractor->getVocabulary().rows, CV_32FC1 );
 | |
|         Mat responses( (int)images.size(), 1, CV_32SC1 );
 | |
| 
 | |
|         // Transfer bag of words vectors and responses across to the training data matrices
 | |
|         for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ )
 | |
|         {
 | |
|             // Transfer image descriptor (bag of words vector) to training data matrix
 | |
|             Mat submat = trainData.row((int)imageIdx);
 | |
|             if( bowImageDescriptors[imageIdx].cols != bowExtractor->descriptorSize() )
 | |
|             {
 | |
|                 cout << "Error: computed bow image descriptor size " << bowImageDescriptors[imageIdx].cols
 | |
|                      << " differs from vocabulary size" << bowExtractor->getVocabulary().cols << endl;
 | |
|                 exit(-1);
 | |
|             }
 | |
|             bowImageDescriptors[imageIdx].copyTo( submat );
 | |
| 
 | |
|             // Set response value
 | |
|             responses.at<int>((int)imageIdx) = objectPresent[imageIdx] ? 1 : -1;
 | |
|         }
 | |
| 
 | |
|         cout << "TRAINING SVM FOR CLASS ..." << objClassName << "..." << endl;
 | |
|         CvSVMParams svmParams;
 | |
|         CvMat class_wts_cv;
 | |
|         setSVMParams( svmParams, class_wts_cv, responses, svmParamsExt.balanceClasses );
 | |
|         CvParamGrid c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid;
 | |
|         setSVMTrainAutoParams( c_grid, gamma_grid,  p_grid, nu_grid, coef_grid, degree_grid );
 | |
|         svm.train_auto( trainData, responses, Mat(), Mat(), svmParams, 10, c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid );
 | |
|         cout << "SVM TRAINING FOR CLASS " << objClassName << " COMPLETED" << endl;
 | |
| 
 | |
|         svm.save( svmFilename.c_str() );
 | |
|         cout << "SAVED CLASSIFIER TO FILE" << endl;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined HAVE_OPENCV_OCL && _OCL_SVM_
 | |
| static void computeConfidences( cv::ocl::CvSVM_OCL& svm, const string& objClassName, VocData& vocData,
 | |
|                                Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
 | |
|                                const string& resPath )
 | |
| #else
 | |
| static void computeConfidences( CvSVM& svm, const string& objClassName, VocData& vocData,
 | |
|                          Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
 | |
|                          const string& resPath )
 | |
| #endif
 | |
| {
 | |
|     cout << "*** CALCULATING CONFIDENCES FOR CLASS " << objClassName << " ***" << endl;
 | |
|     cout << "CALCULATING BOW VECTORS FOR TEST SET OF " << objClassName << "..." << endl;
 | |
|     // Get classification ground truth for images in the test set
 | |
|     vector<ObdImage> images;
 | |
|     vector<Mat> bowImageDescriptors;
 | |
|     vector<char> objectPresent;
 | |
|     vocData.getClassImages( objClassName, CV_OBD_TEST, images, objectPresent );
 | |
| 
 | |
|     // Compute the bag of words vector for each image in the test set
 | |
|     calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath );
 | |
|     // Remove any images for which descriptors could not be calculated
 | |
|     removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent);
 | |
| 
 | |
|     // Use the bag of words vectors to calculate classifier output for each image in test set
 | |
|     cout << "CALCULATING CONFIDENCE SCORES FOR CLASS " << objClassName << "..." << endl;
 | |
|     vector<float> confidences( images.size() );
 | |
|     float signMul = 1.f;
 | |
|     for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ )
 | |
|     {
 | |
|         if( imageIdx == 0 )
 | |
|         {
 | |
|             // In the first iteration, determine the sign of the positive class
 | |
|             float classVal = confidences[imageIdx] = svm.predict( bowImageDescriptors[imageIdx], false );
 | |
|             float scoreVal = confidences[imageIdx] = svm.predict( bowImageDescriptors[imageIdx], true );
 | |
|             signMul = (classVal < 0) == (scoreVal < 0) ? 1.f : -1.f;
 | |
|         }
 | |
|         // svm output of decision function
 | |
|         confidences[imageIdx] = signMul * svm.predict( bowImageDescriptors[imageIdx], true );
 | |
|     }
 | |
| 
 | |
|     cout << "WRITING QUERY RESULTS TO VOC RESULTS FILE FOR CLASS " << objClassName << "..." << endl;
 | |
|     vocData.writeClassifierResultsFile( resPath + plotsDir, objClassName, CV_OBD_TEST, images, confidences, 1, true );
 | |
| 
 | |
|     cout << "DONE - " << objClassName << endl;
 | |
|     cout << "---------------------------------------------------------------" << endl;
 | |
| }
 | |
| 
 | |
| static void computeGnuPlotOutput( const string& resPath, const string& objClassName, VocData& vocData )
 | |
| {
 | |
|     vector<float> precision, recall;
 | |
|     float ap;
 | |
| 
 | |
|     const string resultFile = vocData.getResultsFilename( objClassName, CV_VOC_TASK_CLASSIFICATION, CV_OBD_TEST);
 | |
|     const string plotFile = resultFile.substr(0, resultFile.size()-4) + ".plt";
 | |
| 
 | |
|     cout << "Calculating precision recall curve for class '" <<objClassName << "'" << endl;
 | |
|     vocData.calcClassifierPrecRecall( resPath + plotsDir + "/" + resultFile, precision, recall, ap, true );
 | |
|     cout << "Outputting to GNUPlot file..." << endl;
 | |
|     vocData.savePrecRecallToGnuplot( resPath + plotsDir + "/" + plotFile, precision, recall, ap, objClassName, CV_VOC_PLOT_PNG );
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     if( argc != 3 && argc != 6 )
 | |
|     {
 | |
|         help(argv);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     cv::initModule_nonfree();
 | |
| 
 | |
|     const string vocPath = argv[1], resPath = argv[2];
 | |
| 
 | |
|     // Read or set default parameters
 | |
|     string vocName;
 | |
|     DDMParams ddmParams;
 | |
|     VocabTrainParams vocabTrainParams;
 | |
|     SVMTrainParamsExt svmTrainParamsExt;
 | |
| 
 | |
|     makeUsedDirs( resPath );
 | |
| 
 | |
|     FileStorage paramsFS( resPath + "/" + paramsFile, FileStorage::READ );
 | |
|     if( paramsFS.isOpened() )
 | |
|     {
 | |
|        readUsedParams( paramsFS.root(), vocName, ddmParams, vocabTrainParams, svmTrainParamsExt );
 | |
|        CV_Assert( vocName == getVocName(vocPath) );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         vocName = getVocName(vocPath);
 | |
|         if( argc!= 6 )
 | |
|         {
 | |
|             cout << "Feature detector, descriptor extractor, descriptor matcher must be set" << endl;
 | |
|             return -1;
 | |
|         }
 | |
|         ddmParams = DDMParams( argv[3], argv[4], argv[5] ); // from command line
 | |
|         // vocabTrainParams and svmTrainParamsExt is set by defaults
 | |
|         paramsFS.open( resPath + "/" + paramsFile, FileStorage::WRITE );
 | |
|         if( paramsFS.isOpened() )
 | |
|         {
 | |
|             writeUsedParams( paramsFS, vocName, ddmParams, vocabTrainParams, svmTrainParamsExt );
 | |
|             paramsFS.release();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             cout << "File " << (resPath + "/" + paramsFile) << "can not be opened to write" << endl;
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Create detector, descriptor, matcher.
 | |
|     Ptr<FeatureDetector> featureDetector = FeatureDetector::create( ddmParams.detectorType );
 | |
|     Ptr<DescriptorExtractor> descExtractor = DescriptorExtractor::create( ddmParams.descriptorType );
 | |
|     Ptr<BOWImgDescriptorExtractor> bowExtractor;
 | |
|     if( !featureDetector || !descExtractor )
 | |
|     {
 | |
|         cout << "featureDetector or descExtractor was not created" << endl;
 | |
|         return -1;
 | |
|     }
 | |
|     {
 | |
|         Ptr<DescriptorMatcher> descMatcher = DescriptorMatcher::create( ddmParams.matcherType );
 | |
|         if( !featureDetector || !descExtractor || !descMatcher )
 | |
|         {
 | |
|             cout << "descMatcher was not created" << endl;
 | |
|             return -1;
 | |
|         }
 | |
|         bowExtractor = makePtr<BOWImgDescriptorExtractor>( descExtractor, descMatcher );
 | |
|     }
 | |
| 
 | |
|     // Print configuration to screen
 | |
|     printUsedParams( vocPath, resPath, ddmParams, vocabTrainParams, svmTrainParamsExt );
 | |
|     // Create object to work with VOC
 | |
|     VocData vocData( vocPath, false );
 | |
| 
 | |
|     // 1. Train visual word vocabulary if a pre-calculated vocabulary file doesn't already exist from previous run
 | |
|     Mat vocabulary = trainVocabulary( resPath + "/" + vocabularyFile, vocData, vocabTrainParams,
 | |
|                                       featureDetector, descExtractor );
 | |
|     bowExtractor->setVocabulary( vocabulary );
 | |
| 
 | |
|     // 2. Train a classifier and run a sample query for each object class
 | |
|     const vector<string>& objClasses = vocData.getObjectClasses(); // object class list
 | |
|     for( size_t classIdx = 0; classIdx < objClasses.size(); ++classIdx )
 | |
|     {
 | |
|         // Train a classifier on train dataset
 | |
| #if defined HAVE_OPENCV_OCL && _OCL_SVM_
 | |
|         cv::ocl::CvSVM_OCL svm;
 | |
| #else
 | |
|         CvSVM svm;
 | |
| #endif
 | |
|         trainSVMClassifier( svm, svmTrainParamsExt, objClasses[classIdx], vocData,
 | |
|                             bowExtractor, featureDetector, resPath );
 | |
| 
 | |
|         // Now use the classifier over all images on the test dataset and rank according to score order
 | |
|         // also calculating precision-recall etc.
 | |
|         computeConfidences( svm, objClasses[classIdx], vocData,
 | |
|                             bowExtractor, featureDetector, resPath );
 | |
|         // Calculate precision/recall/ap and use GNUPlot to output to a pdf file
 | |
|         computeGnuPlotOutput( resPath, objClasses[classIdx], vocData );
 | |
|     }
 | |
|     return 0;
 | |
| }
 | 
