opencv/modules/features2d/src/detectors.cpp
2014-01-25 00:23:59 +04:00

388 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
/*
* FeatureDetector
*/
FeatureDetector::~FeatureDetector()
{}
void FeatureDetector::detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask ) const
{
keypoints.clear();
if( image.empty() )
return;
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
detectImpl( image, keypoints, mask );
}
void FeatureDetector::detect(InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection,
InputArrayOfArrays _masks ) const
{
if (_imageCollection.isUMatVector())
{
std::vector<UMat> uimageCollection, umasks;
_imageCollection.getUMatVector(uimageCollection);
_masks.getUMatVector(umasks);
pointCollection.resize( uimageCollection.size() );
for( size_t i = 0; i < uimageCollection.size(); i++ )
detect( uimageCollection[i], pointCollection[i], umasks.empty() ? noArray() : umasks[i] );
return;
}
std::vector<Mat> imageCollection, masks;
_imageCollection.getMatVector(imageCollection);
_masks.getMatVector(masks);
pointCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
detect( imageCollection[i], pointCollection[i], masks.empty() ? noArray() : masks[i] );
}
/*void FeatureDetector::read( const FileNode& )
{}
void FeatureDetector::write( FileStorage& ) const
{}*/
bool FeatureDetector::empty() const
{
return false;
}
void FeatureDetector::removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints )
{
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
{
if( detectorType.find("Grid") == 0 )
{
return makePtr<GridAdaptedFeatureDetector>(FeatureDetector::create(
detectorType.substr(strlen("Grid"))));
}
if( detectorType.find("Pyramid") == 0 )
{
return makePtr<PyramidAdaptedFeatureDetector>(FeatureDetector::create(
detectorType.substr(strlen("Pyramid"))));
}
if( detectorType.find("Dynamic") == 0 )
{
return makePtr<DynamicAdaptedFeatureDetector>(AdjusterAdapter::create(
detectorType.substr(strlen("Dynamic"))));
}
if( detectorType.compare( "HARRIS" ) == 0 )
{
Ptr<FeatureDetector> fd = FeatureDetector::create("GFTT");
fd->set("useHarrisDetector", true);
return fd;
}
return Algorithm::create<FeatureDetector>("Feature2D." + detectorType);
}
GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
double _minDistance, int _blockSize,
bool _useHarrisDetector, double _k )
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
{
}
void GFTTDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
{
std::vector<Point2f> corners;
if (_image.isUMat())
{
UMat ugrayImage;
if( _image.type() != CV_8U )
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
else
ugrayImage = _image.getUMat();
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, useHarrisDetector, k );
}
else
{
Mat image = _image.getMat(), grayImage = image;
if( image.type() != CV_8U )
cvtColor( image, grayImage, COLOR_BGR2GRAY );
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, useHarrisDetector, k );
}
keypoints.resize(corners.size());
std::vector<Point2f>::const_iterator corner_it = corners.begin();
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* DenseFeatureDetector
*/
DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featureScaleLevels,
float _featureScaleMul, int _initXyStep,
int _initImgBound, bool _varyXyStepWithScale,
bool _varyImgBoundWithScale ) :
initFeatureScale(_initFeatureScale), featureScaleLevels(_featureScaleLevels),
featureScaleMul(_featureScaleMul), initXyStep(_initXyStep), initImgBound(_initImgBound),
varyXyStepWithScale(_varyXyStepWithScale), varyImgBoundWithScale(_varyImgBoundWithScale)
{}
void DenseFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
float curScale = static_cast<float>(initFeatureScale);
int curStep = initXyStep;
int curBound = initImgBound;
for( int curLevel = 0; curLevel < featureScaleLevels; curLevel++ )
{
for( int x = curBound; x < image.cols - curBound; x += curStep )
{
for( int y = curBound; y < image.rows - curBound; y += curStep )
{
keypoints.push_back( KeyPoint(static_cast<float>(x), static_cast<float>(y), curScale) );
}
}
curScale = static_cast<float>(curScale * featureScaleMul);
if( varyXyStepWithScale ) curStep = static_cast<int>( curStep * featureScaleMul + 0.5f );
if( varyImgBoundWithScale ) curBound = static_cast<int>( curBound * featureScaleMul + 0.5f );
}
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
/*
* GridAdaptedFeatureDetector
*/
GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector,
int _maxTotalKeypoints, int _gridRows, int _gridCols )
: detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols)
{}
bool GridAdaptedFeatureDetector::empty() const
{
return !detector || detector->empty();
}
struct ResponseComparator
{
bool operator() (const KeyPoint& a, const KeyPoint& b)
{
return std::abs(a.response) > std::abs(b.response);
}
};
static void keepStrongest( int N, std::vector<KeyPoint>& keypoints )
{
if( (int)keypoints.size() > N )
{
std::vector<KeyPoint>::iterator nth = keypoints.begin() + N;
std::nth_element( keypoints.begin(), nth, keypoints.end(), ResponseComparator() );
keypoints.erase( nth, keypoints.end() );
}
}
namespace {
class GridAdaptedFeatureDetectorInvoker : public ParallelLoopBody
{
private:
int gridRows_, gridCols_;
int maxPerCell_;
std::vector<KeyPoint>& keypoints_;
const Mat& image_;
const Mat& mask_;
const Ptr<FeatureDetector>& detector_;
Mutex* kptLock_;
GridAdaptedFeatureDetectorInvoker& operator=(const GridAdaptedFeatureDetectorInvoker&); // to quiet MSVC
public:
GridAdaptedFeatureDetectorInvoker(const Ptr<FeatureDetector>& detector, const Mat& image, const Mat& mask,
std::vector<KeyPoint>& keypoints, int maxPerCell, int gridRows, int gridCols,
cv::Mutex* kptLock)
: gridRows_(gridRows), gridCols_(gridCols), maxPerCell_(maxPerCell),
keypoints_(keypoints), image_(image), mask_(mask), detector_(detector),
kptLock_(kptLock)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; ++i)
{
int celly = i / gridCols_;
int cellx = i - celly * gridCols_;
Range row_range((celly*image_.rows)/gridRows_, ((celly+1)*image_.rows)/gridRows_);
Range col_range((cellx*image_.cols)/gridCols_, ((cellx+1)*image_.cols)/gridCols_);
Mat sub_image = image_(row_range, col_range);
Mat sub_mask;
if (!mask_.empty()) sub_mask = mask_(row_range, col_range);
std::vector<KeyPoint> sub_keypoints;
sub_keypoints.reserve(maxPerCell_);
detector_->detect( sub_image, sub_keypoints, sub_mask );
keepStrongest( maxPerCell_, sub_keypoints );
std::vector<cv::KeyPoint>::iterator it = sub_keypoints.begin(),
end = sub_keypoints.end();
for( ; it != end; ++it )
{
it->pt.x += col_range.start;
it->pt.y += row_range.start;
}
cv::AutoLock join_keypoints(*kptLock_);
keypoints_.insert( keypoints_.end(), sub_keypoints.begin(), sub_keypoints.end() );
}
}
};
} // namepace
void GridAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
if (_image.empty() || maxTotalKeypoints < gridRows * gridCols)
{
keypoints.clear();
return;
}
keypoints.reserve(maxTotalKeypoints);
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
Mat image = _image.getMat(), mask = _mask.getMat();
cv::Mutex kptLock;
cv::parallel_for_(cv::Range(0, gridRows * gridCols),
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
}
/*
* PyramidAdaptedFeatureDetector
*/
PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& _detector, int _maxLevel )
: detector(_detector), maxLevel(_maxLevel)
{}
bool PyramidAdaptedFeatureDetector::empty() const
{
return !detector || detector->empty();
}
void PyramidAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
Mat src = image;
Mat src_mask = mask;
Mat dilated_mask;
if( !mask.empty() )
{
dilate( mask, dilated_mask, Mat() );
Mat mask255( mask.size(), CV_8UC1, Scalar(0) );
mask255.setTo( Scalar(255), dilated_mask != 0 );
dilated_mask = mask255;
}
for( int l = 0, multiplier = 1; l <= maxLevel; ++l, multiplier *= 2 )
{
// Detect on current level of the pyramid
std::vector<KeyPoint> new_pts;
detector->detect( src, new_pts, src_mask );
std::vector<KeyPoint>::iterator it = new_pts.begin(),
end = new_pts.end();
for( ; it != end; ++it)
{
it->pt.x *= multiplier;
it->pt.y *= multiplier;
it->size *= multiplier;
it->octave = l;
}
keypoints.insert( keypoints.end(), new_pts.begin(), new_pts.end() );
// Downsample
if( l < maxLevel )
{
Mat dst;
pyrDown( src, dst );
src = dst;
if( !mask.empty() )
resize( dilated_mask, src_mask, src.size(), 0, 0, INTER_AREA );
}
}
if( !mask.empty() )
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
}