233 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Peng Xiao, pengxiao@multicorewareinc.com
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other oclMaterials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors as is and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include <iostream>
 | |
| #include <stdio.h>
 | |
| #include "opencv2/core/core.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/ocl/ocl.hpp"
 | |
| #include "opencv2/nonfree/nonfree.hpp"
 | |
| #include "opencv2/nonfree/ocl.hpp"
 | |
| #include "opencv2/calib3d/calib3d.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| using namespace cv::ocl;
 | |
| 
 | |
| //#define USE_CPU_DESCRIPTOR // use cpu descriptor extractor until ocl descriptor extractor is fixed
 | |
| //#define USE_CPU_BFMATCHER
 | |
| void help();
 | |
| 
 | |
| void help()
 | |
| {
 | |
|     cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << endl;
 | |
|     cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2>" << endl;
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////
 | |
| // This program demonstrates the usage of SURF_OCL.
 | |
| // use cpu findHomography interface to calculate the transformation matrix
 | |
| int main(int argc, char* argv[])
 | |
| {
 | |
|     if (argc != 5 && argc != 1)
 | |
|     {
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
|     vector<cv::ocl::Info> info;
 | |
|     if(!cv::ocl::getDevice(info))
 | |
|     {
 | |
|         cout << "Error: Did not find a valid OpenCL device!" << endl;
 | |
|         return -1;
 | |
|     }
 | |
|     Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
 | |
|     oclMat img1, img2;
 | |
|     if(argc != 5)
 | |
|     {
 | |
|         cpu_img1 = imread("o.png");
 | |
|         cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY);
 | |
|         img1     = cpu_img1_grey;
 | |
|         CV_Assert(!img1.empty());
 | |
| 
 | |
|         cpu_img2 = imread("r2.png");
 | |
|         cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY);
 | |
|         img2     = cpu_img2_grey;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (int i = 1; i < argc; ++i)
 | |
|         {
 | |
|             if (string(argv[i]) == "--left")
 | |
|             {
 | |
|                 cpu_img1 = imread(argv[++i]);
 | |
|                 cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY);
 | |
|                 img1     = cpu_img1_grey;
 | |
|                 CV_Assert(!img1.empty());
 | |
|             }
 | |
|             else if (string(argv[i]) == "--right")
 | |
|             {
 | |
|                 cpu_img2 = imread(argv[++i]);
 | |
|                 cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY);
 | |
|                 img2     = cpu_img2_grey;
 | |
|             }
 | |
|             else if (string(argv[i]) == "--help")
 | |
|             {
 | |
|                 help();
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     SURF_OCL surf;
 | |
|     //surf.hessianThreshold = 400.f;
 | |
|     //surf.extended = false;
 | |
| 
 | |
|     // detecting keypoints & computing descriptors
 | |
|     oclMat keypoints1GPU, keypoints2GPU;
 | |
|     oclMat descriptors1GPU, descriptors2GPU;
 | |
| 
 | |
|     // downloading results
 | |
|     vector<KeyPoint> keypoints1, keypoints2;
 | |
|     vector<DMatch> matches;
 | |
| 
 | |
| 
 | |
| #ifndef USE_CPU_DESCRIPTOR
 | |
|     surf(img1, oclMat(), keypoints1GPU, descriptors1GPU);
 | |
|     surf(img2, oclMat(), keypoints2GPU, descriptors2GPU);
 | |
| 
 | |
|     surf.downloadKeypoints(keypoints1GPU, keypoints1);
 | |
|     surf.downloadKeypoints(keypoints2GPU, keypoints2);
 | |
| 
 | |
| 
 | |
| #ifdef USE_CPU_BFMATCHER
 | |
|     //BFMatcher
 | |
|     BFMatcher matcher(cv::NORM_L2);
 | |
|     matcher.match(Mat(descriptors1GPU), Mat(descriptors2GPU), matches);
 | |
| #else
 | |
|     BruteForceMatcher_OCL_base matcher(BruteForceMatcher_OCL_base::L2Dist);
 | |
|     matcher.match(descriptors1GPU, descriptors2GPU, matches);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
|     surf(img1, oclMat(), keypoints1GPU);
 | |
|     surf(img2, oclMat(), keypoints2GPU);
 | |
|     surf.downloadKeypoints(keypoints1GPU, keypoints1);
 | |
|     surf.downloadKeypoints(keypoints2GPU, keypoints2);
 | |
| 
 | |
|     // use SURF_OCL to detect keypoints and use SURF to extract descriptors
 | |
|     SURF surf_cpu;
 | |
|     Mat descriptors1, descriptors2;
 | |
|     surf_cpu(cpu_img1, Mat(), keypoints1, descriptors1, true);
 | |
|     surf_cpu(cpu_img2, Mat(), keypoints2, descriptors2, true);
 | |
|     matcher.match(descriptors1, descriptors2, matches);
 | |
| #endif
 | |
|     cout << "OCL: FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl;
 | |
|     cout << "OCL: FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl;
 | |
| 
 | |
|     double max_dist = 0; double min_dist = 100;
 | |
|     //-- Quick calculation of max and min distances between keypoints
 | |
|     for( size_t i = 0; i < keypoints1.size(); i++ )
 | |
|     {
 | |
|         double dist = matches[i].distance;
 | |
|         if( dist < min_dist ) min_dist = dist;
 | |
|         if( dist > max_dist ) max_dist = dist;
 | |
|     }
 | |
| 
 | |
|     printf("-- Max dist : %f \n", max_dist );
 | |
|     printf("-- Min dist : %f \n", min_dist );
 | |
| 
 | |
|     //-- Draw only "good" matches (i.e. whose distance is less than 2.5*min_dist )
 | |
|     std::vector< DMatch > good_matches;
 | |
| 
 | |
|     for( size_t i = 0; i < keypoints1.size(); i++ )
 | |
|     {
 | |
|         if( matches[i].distance < 3*min_dist )
 | |
|         {
 | |
|             good_matches.push_back( matches[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // drawing the results
 | |
|     Mat img_matches;
 | |
|     drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2,
 | |
|         good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
 | |
|         vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
 | |
| 
 | |
|     //-- Localize the object
 | |
|     std::vector<Point2f> obj;
 | |
|     std::vector<Point2f> scene;
 | |
| 
 | |
|     for( size_t i = 0; i < good_matches.size(); i++ )
 | |
|     {
 | |
|         //-- Get the keypoints from the good matches
 | |
|         obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
 | |
|         scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
 | |
|     }
 | |
|     Mat H = findHomography( obj, scene, RANSAC );
 | |
| 
 | |
|     //-- Get the corners from the image_1 ( the object to be "detected" )
 | |
|     std::vector<Point2f> obj_corners(4);
 | |
|     obj_corners[0] = Point(0,0); obj_corners[1] = Point( cpu_img1.cols, 0 );
 | |
|     obj_corners[2] = Point( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = Point( 0, cpu_img1.rows );
 | |
|     std::vector<Point2f> scene_corners(4);
 | |
| 
 | |
|     perspectiveTransform( obj_corners, scene_corners, H);
 | |
| 
 | |
|     //-- Draw lines between the corners (the mapped object in the scene - image_2 )
 | |
|     line( img_matches, scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
 | |
|     line( img_matches, scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
 | |
|     line( img_matches, scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
 | |
|     line( img_matches, scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
 | |
| 
 | |
|     //-- Show detected matches
 | |
|     namedWindow("ocl surf matches", 0);
 | |
|     imshow("ocl surf matches", img_matches);
 | |
|     waitKey(0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
