opencv/modules/gpu/src/softcascade.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

680 lines
22 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined (HAVE_CUDA)
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
cv::gpu::ChannelsProcessor::ChannelsProcessor() { throw_nogpu(); }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { throw_nogpu(); }
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int, const int, const int)
{ throw_nogpu(); return cv::Ptr<cv::gpu::ChannelsProcessor>(0); }
#else
# include "icf.hpp"
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
{
workRect.x = cvRound(w / (float)oct.shrinkage);
workRect.y = cvRound(h / (float)oct.shrinkage);
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale);
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale);
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
if (fabs(relScale - 1.f) < FLT_EPSILON)
scaling[0] = scaling[1] = 1.f;
else
{
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2.0f)) : 1.f;
scaling[1] = relScale * relScale;
}
}
namespace cv { namespace gpu { namespace device {
namespace icf {
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream);
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections,
PtrStepSzb suppressed, cudaStream_t stream);
void bgr2Luv(const PtrStepSzb& bgr, PtrStepSzb luv);
void gray2hog(const PtrStepSzb& gray, PtrStepSzb mag, const int bins);
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk);
}
}}}
struct cv::gpu::SCascade::Fields
{
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method)
{
static const char *const SC_STAGE_TYPE = "stageType";
static const char *const SC_BOOST = "BOOST";
static const char *const SC_FEATURE_TYPE = "featureType";
static const char *const SC_ICF = "ICF";
static const char *const SC_ORIG_W = "width";
static const char *const SC_ORIG_H = "height";
static const char *const SC_FEATURE_FORMAT = "featureFormat";
static const char *const SC_SHRINKAGE = "shrinkage";
static const char *const SC_OCTAVES = "octaves";
static const char *const SC_OCT_SCALE = "scale";
static const char *const SC_OCT_WEAKS = "weaks";
static const char *const SC_TREES = "trees";
static const char *const SC_WEAK_THRESHOLD = "treeThreshold";
static const char *const SC_FEATURES = "features";
static const char *const SC_INTERNAL = "internalNodes";
static const char *const SC_LEAF = "leafValues";
static const char *const SC_F_CHANNEL = "channel";
static const char *const SC_F_RECT = "rect";
// only Ada Boost supported
std::string stageTypeStr = (std::string)root[SC_STAGE_TYPE];
CV_Assert(stageTypeStr == SC_BOOST);
// only HOG-like integral channel features supported
std::string featureTypeStr = (std::string)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF);
int origWidth = (int)root[SC_ORIG_W];
int origHeight = (int)root[SC_ORIG_H];
std::string fformat = (std::string)root[SC_FEATURE_FORMAT];
bool useBoxes = (fformat == "BOX");
ushort shrinkage = cv::saturate_cast<ushort>((int)root[SC_SHRINKAGE]);
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return 0;
using namespace device::icf;
std::vector<Octave> voctaves;
std::vector<float> vstages;
std::vector<Node> vnodes;
std::vector<float> vleaves;
FileNodeIterator it = fn.begin(), it_end = fn.end();
for (ushort octIndex = 0; it != it_end; ++it, ++octIndex)
{
FileNode fns = *it;
float scale = powf(2.f,saturate_cast<float>((int)fns[SC_OCT_SCALE]));
bool isUPOctave = scale >= 1;
ushort nweaks = saturate_cast<ushort>((int)fns[SC_OCT_WEAKS]);
ushort2 size;
size.x = cvRound(origWidth * scale);
size.y = cvRound(origHeight * scale);
Octave octave(octIndex, nweaks, shrinkage, size, scale);
CV_Assert(octave.stages > 0);
voctaves.push_back(octave);
FileNode ffs = fns[SC_FEATURES];
if (ffs.empty()) return 0;
std::vector<cv::Rect> feature_rects;
std::vector<int> feature_channels;
FileNodeIterator ftrs = ffs.begin(), ftrs_end = ffs.end();
int feature_offset = 0;
for (; ftrs != ftrs_end; ++ftrs, ++feature_offset )
{
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
cv::FileNodeIterator r_it = ftn.begin();
int x = (int)*(r_it++);
int y = (int)*(r_it++);
int w = (int)*(r_it++);
int h = (int)*(r_it++);
if (useBoxes)
{
if (isUPOctave)
{
w -= x;
h -= y;
}
}
else
{
if (!isUPOctave)
{
w += x;
h += y;
}
}
feature_rects.push_back(cv::Rect(x, y, w, h));
feature_channels.push_back((int)(*ftrs)[SC_F_CHANNEL]);
}
fns = fns[SC_TREES];
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
FileNodeIterator st = fns.begin(), st_end = fns.end();
for (; st != st_end; ++st )
{
FileNode octfn = *st;
float threshold = (float)octfn[SC_WEAK_THRESHOLD];
vstages.push_back(threshold);
FileNode intfns = octfn[SC_INTERNAL];
FileNodeIterator inIt = intfns.begin(), inIt_end = intfns.end();
for (; inIt != inIt_end;)
{
inIt +=2;
int featureIdx = (int)(*(inIt++));
float orig_threshold = (float)(*(inIt++));
unsigned int th = saturate_cast<unsigned int>((int)orig_threshold);
cv::Rect& r = feature_rects[featureIdx];
uchar4 rect;
rect.x = saturate_cast<uchar>(r.x);
rect.y = saturate_cast<uchar>(r.y);
rect.z = saturate_cast<uchar>(r.width);
rect.w = saturate_cast<uchar>(r.height);
unsigned int channel = saturate_cast<unsigned int>(feature_channels[featureIdx]);
vnodes.push_back(Node(rect, channel, th));
}
intfns = octfn[SC_LEAF];
inIt = intfns.begin(), inIt_end = intfns.end();
for (; inIt != inIt_end; ++inIt)
{
vleaves.push_back((float)(*inIt));
}
}
}
cv::Mat hoctaves(1, (int) (voctaves.size() * sizeof(Octave)), CV_8UC1, (uchar*)&(voctaves[0]));
CV_Assert(!hoctaves.empty());
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
CV_Assert(!hstages.empty());
cv::Mat hnodes(1, (int) (vnodes.size() * sizeof(Node)), CV_8UC1, (uchar*)&(vnodes[0]) );
CV_Assert(!hnodes.empty());
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
CV_Assert(!hleaves.empty());
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
hoctaves, hstages, hnodes, hleaves, method);
fields->voctaves = voctaves;
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH);
return fields;
}
bool check(float mins,float maxs, int scales)
{
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales);
minScale = mins;
maxScale = maxScale;
totals = scales;
return updated;
}
int createLevels(const int fh, const int fw)
{
using namespace device::icf;
std::vector<Level> vlevels;
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1);
float scale = minScale;
int dcs = 0;
for (int sc = 0; sc < totals; ++sc)
{
int width = (int)::std::max(0.0f, fw - (origObjWidth * scale));
int height = (int)::std::max(0.0f, fh - (origObjHeight * scale));
float logScale = ::log(scale);
int fit = fitOctave(voctaves, logScale);
Level level(fit, voctaves[fit], scale, width, height);
if (!width || !height)
break;
else
{
vlevels.push_back(level);
if (voctaves[fit].scale < 1) ++dcs;
}
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
}
cv::Mat hlevels = cv::Mat(1, (int) (vlevels.size() * sizeof(Level)), CV_8UC1, (uchar*)&(vlevels[0]) );
CV_Assert(!hlevels.empty());
levels.upload(hlevels);
downscales = dcs;
return dcs;
}
bool update(int fh, int fw, int shr)
{
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
hogluv.setTo(cv::Scalar::all(0));
overlaps.create(1, 5000, CV_8UC1);
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1);
return true;
}
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method)
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
{
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr);
octaves.upload(hoctaves);
stages.upload(hstages);
nodes.upload(hnodes);
leaves.upload(hleaves);
preprocessor = ChannelsProcessor::create(shrinkage, 6, method);
}
void detect(cv::gpu::GpuMat& objects, Stream& s) const
{
if (s)
s.enqueueMemSet(objects, 0);
else
cudaMemset(objects.data, 0, sizeof(Detection));
cudaSafeCall( cudaGetLastError());
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves);
cudaStream_t stream = StreamAccessor::getStream(s);
invoker(mask, hogluv, objects, downscales, stream);
}
void suppress(GpuMat& objects, Stream& s)
{
GpuMat ndetections = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
if (s)
{
s.enqueueMemSet(overlaps, 0);
s.enqueueMemSet(suppressed, 0);
}
else
{
overlaps.setTo(0);
suppressed.setTo(0);
}
cudaStream_t stream = StreamAccessor::getStream(s);
device::icf::suppress(objects, overlaps, ndetections, suppressed, stream);
}
private:
typedef std::vector<device::icf::Octave>::const_iterator octIt_t;
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor)
{
float minAbsLog = FLT_MAX;
int res = 0;
for (int oct = 0; oct < (int)octs.size(); ++oct)
{
const device::icf::Octave& octave =octs[oct];
float logOctave = ::log(octave.scale);
float logAbsScale = ::fabs(logFactor - logOctave);
if(logAbsScale < minAbsLog)
{
res = oct;
minAbsLog = logAbsScale;
}
}
return res;
}
public:
cv::Ptr<ChannelsProcessor> preprocessor;
// scales range
float minScale;
float maxScale;
int totals;
int origObjWidth;
int origObjHeight;
const int shrinkage;
int downscales;
// 160x120x10
GpuMat shrunk;
// temporal mat for integral
GpuMat integralBuffer;
// 161x121x10
GpuMat hogluv;
// used for suppression
GpuMat suppressed;
// used for area overlap computing during
GpuMat overlaps;
// Cascade from xml
GpuMat octaves;
GpuMat stages;
GpuMat nodes;
GpuMat leaves;
GpuMat levels;
// For ROI
GpuMat mask;
GpuMat genRoiTmp;
// GpuMat collected;
std::vector<device::icf::Octave> voctaves;
// DeviceInfo info;
enum { BOOST = 0 };
enum
{
DEFAULT_FRAME_WIDTH = 640,
DEFAULT_FRAME_HEIGHT = 480,
HOG_LUV_BINS = 10
};
};
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {}
cv::gpu::SCascade::~SCascade() { delete fields; }
bool cv::gpu::SCascade::load(const FileNode& fn)
{
if (fields) delete fields;
fields = Fields::parseCascade(fn, (float)minScale, (float)maxScale, scales, flags);
return fields != 0;
}
void cv::gpu::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, Stream& s) const
{
CV_Assert(fields);
// only color images and precomputed integrals are supported
int type = _image.type();
CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty()));
const GpuMat image = _image.getGpuMat();
if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1);
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
/// roi
Fields& flds = *fields;
int shr = flds.shrinkage;
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
cv::gpu::resize(rois, flds.genRoiTmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, s);
cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
if (type == CV_8UC3)
{
flds.update(image.rows, image.cols, flds.shrinkage);
if (flds.check((float)minScale, (float)maxScale, scales))
flds.createLevels(image.rows, image.cols);
flds.preprocessor->apply(image, flds.shrunk);
cv::gpu::integralBuffered(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
}
else
{
if (s)
s.enqueueCopy(image, flds.hogluv);
else
image.copyTo(flds.hogluv);
}
flds.detect(objects, s);
if ( (flags && NMS_MASK) != NO_REJECT)
{
GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
flds.suppress(objects, s);
flds.suppressed.copyTo(spr);
}
}
void cv::gpu::SCascade::read(const FileNode& fn)
{
Algorithm::read(fn);
}
namespace {
using cv::InputArray;
using cv::OutputArray;
using cv::gpu::Stream;
using cv::gpu::GpuMat;
inline void setZero(cv::gpu::GpuMat& m, Stream& s)
{
if (s)
s.enqueueMemSet(m, 0);
else
m.setTo(0);
}
struct GenricPreprocessor : public cv::gpu::ChannelsProcessor
{
GenricPreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~GenricPreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
const GpuMat frame = _frame.getGpuMat();
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
setZero(channels, s);
cv::gpu::cvtColor(frame, gray, CV_BGR2GRAY, s);
createHogBins(s);
createLuvBins(frame, s);
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
}
private:
void createHogBins(Stream& s)
{
static const int fw = gray.cols;
static const int fh = gray.rows;
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
// normalize magnitude to uchar interval and angles to 6 bins
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2.0f))), nmag, 1, -1, s);
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
//create uchar magnitude
GpuMat cmag(channels, cv::Rect(0, fh * HOG_BINS, fw, fh));
if (s)
s.enqueueConvert(nmag, cmag, CV_8UC1);
else
nmag.convertTo(cmag, CV_8UC1);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
cv::gpu::device::icf::fillBins(channels, nang, fw, fh, HOG_BINS, stream);
}
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s)
{
static const int fw = colored.cols;
static const int fh = colored.rows;
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
std::vector<GpuMat> splited;
for(int i = 0; i < LUV_BINS; ++i)
{
splited.push_back(GpuMat(channels, cv::Rect(0, fh * (7 + i), fw, fh)));
}
cv::gpu::split(luv, splited, s);
}
enum {HOG_BINS = 6, LUV_BINS = 3};
const int shrinkage;
const int bins;
GpuMat gray;
GpuMat luv;
GpuMat channels;
// preallocated buffer for floating point operations
GpuMat fplane;
GpuMat sobelBuf;
};
struct SeparablePreprocessor : public cv::gpu::ChannelsProcessor
{
SeparablePreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~SeparablePreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
const GpuMat frame = _frame.getGpuMat();
cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0);
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
setZero(channels, s);
cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
cv::gpu::device::icf::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins);
cv::gpu::GpuMat luv(channels, cv::Rect(0, bgr.rows * (bins + 1), bgr.cols, bgr.rows * 3));
cv::gpu::device::icf::bgr2Luv(bgr, luv);
cv::gpu::device::icf::shrink(channels, shrunk);
}
private:
const int shrinkage;
const int bins;
GpuMat bgr;
GpuMat gray;
GpuMat channels;
};
}
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int s, const int b, const int m)
{
CV_Assert((m && SEPARABLE) || (m && GENERIC));
if (m && GENERIC)
return cv::Ptr<cv::gpu::ChannelsProcessor>(new GenricPreprocessor(s, b));
return cv::Ptr<cv::gpu::ChannelsProcessor>(new SeparablePreprocessor(s, b));
}
cv::gpu::ChannelsProcessor::ChannelsProcessor() { }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { }
#endif