 f36f8067bc
			
		
	
	f36f8067bc
	
	
	
		
			
			Conflicts: modules/calib3d/include/opencv2/calib3d/calib3d.hpp modules/core/include/opencv2/core/core.hpp modules/core/include/opencv2/core/cuda/limits.hpp modules/core/include/opencv2/core/internal.hpp modules/core/src/matrix.cpp modules/nonfree/test/test_features2d.cpp modules/ocl/include/opencv2/ocl/ocl.hpp modules/ocl/src/hog.cpp modules/ocl/test/test_haar.cpp modules/ocl/test/test_objdetect.cpp modules/ocl/test/test_pyrup.cpp modules/ts/src/precomp.hpp samples/ocl/facedetect.cpp samples/ocl/hog.cpp samples/ocl/pyrlk_optical_flow.cpp samples/ocl/surf_matcher.cpp
		
			
				
	
	
		
			1225 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1225 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/calib3d.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| const string FEATURES2D_DIR = "features2d";
 | |
| const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";
 | |
| const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
 | |
| const string IMAGE_FILENAME = "tsukuba.png";
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *            Regression tests for feature detectors comparing keypoints.                 *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| class CV_FeatureDetectorTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
 | |
|         name(_name), fdetector(_fdetector) {}
 | |
| 
 | |
| protected:
 | |
|     bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
 | |
|     void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
 | |
| 
 | |
|     void emptyDataTest();
 | |
|     void regressionTest(); // TODO test of detect() with mask
 | |
| 
 | |
|     virtual void run( int );
 | |
| 
 | |
|     string name;
 | |
|     Ptr<FeatureDetector> fdetector;
 | |
| };
 | |
| 
 | |
| void CV_FeatureDetectorTest::emptyDataTest()
 | |
| {
 | |
|     // One image.
 | |
|     Mat image;
 | |
|     vector<KeyPoint> keypoints;
 | |
|     try
 | |
|     {
 | |
|         fdetector->detect( image, keypoints );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     if( !keypoints.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Several images.
 | |
|     vector<Mat> images;
 | |
|     vector<vector<KeyPoint> > keypointCollection;
 | |
|     try
 | |
|     {
 | |
|         fdetector->detect( images, keypointCollection );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
 | |
| {
 | |
|     const float maxPtDif = 1.f;
 | |
|     const float maxSizeDif = 1.f;
 | |
|     const float maxAngleDif = 2.f;
 | |
|     const float maxResponseDif = 0.1f;
 | |
| 
 | |
|     float dist = (float)norm( p1.pt - p2.pt );
 | |
|     return (dist < maxPtDif &&
 | |
|             fabs(p1.size - p2.size) < maxSizeDif &&
 | |
|             abs(p1.angle - p2.angle) < maxAngleDif &&
 | |
|             abs(p1.response - p2.response) < maxResponseDif &&
 | |
|             p1.octave == p2.octave &&
 | |
|             p1.class_id == p2.class_id );
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
 | |
| {
 | |
|     const float maxCountRatioDif = 0.01f;
 | |
| 
 | |
|     // Compare counts of validation and calculated keypoints.
 | |
|     float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
 | |
|     if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
 | |
|                     validKeypoints.size(), calcKeypoints.size() );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
 | |
|     int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
 | |
|     for( size_t v = 0; v < validKeypoints.size(); v++ )
 | |
|     {
 | |
|         int nearestIdx = -1;
 | |
|         float minDist = std::numeric_limits<float>::max();
 | |
| 
 | |
|         for( size_t c = 0; c < calcKeypoints.size(); c++ )
 | |
|         {
 | |
|             progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
 | |
|             float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
 | |
|             if( curDist < minDist )
 | |
|             {
 | |
|                 minDist = curDist;
 | |
|                 nearestIdx = (int)c;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         assert( minDist >= 0 );
 | |
|         if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
 | |
|             badPointCount++;
 | |
|     }
 | |
|     ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
 | |
|                 badPointCount, validKeypoints.size(), calcKeypoints.size() );
 | |
|     if( badPointCount > 0.9 * commonPointCount )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         return;
 | |
|     }
 | |
|     ts->printf( cvtest::TS::LOG, " - OK\n" );
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::regressionTest()
 | |
| {
 | |
|     assert( !fdetector.empty() );
 | |
|     string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
 | |
|     string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
 | |
| 
 | |
|     // Read the test image.
 | |
|     Mat image = imread( imgFilename );
 | |
|     if( image.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     FileStorage fs( resFilename, FileStorage::READ );
 | |
| 
 | |
|     // Compute keypoints.
 | |
|     vector<KeyPoint> calcKeypoints;
 | |
|     fdetector->detect( image, calcKeypoints );
 | |
| 
 | |
|     if( fs.isOpened() ) // Compare computed and valid keypoints.
 | |
|     {
 | |
|         // TODO compare saved feature detector params with current ones
 | |
| 
 | |
|         // Read validation keypoints set.
 | |
|         vector<KeyPoint> validKeypoints;
 | |
|         read( fs["keypoints"], validKeypoints );
 | |
|         if( validKeypoints.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         compareKeypointSets( validKeypoints, calcKeypoints );
 | |
|     }
 | |
|     else // Write detector parameters and computed keypoints as validation data.
 | |
|     {
 | |
|         fs.open( resFilename, FileStorage::WRITE );
 | |
|         if( !fs.isOpened() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             fs << "detector_params" << "{";
 | |
|             fdetector->write( fs );
 | |
|             fs << "}";
 | |
| 
 | |
|             write( fs, "keypoints", calcKeypoints );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::run( int /*start_from*/ )
 | |
| {
 | |
|     if( fdetector.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     emptyDataTest();
 | |
|     regressionTest();
 | |
| 
 | |
|     ts->set_failed_test_info( cvtest::TS::OK );
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                     Regression tests for descriptor extractors.                        *
 | |
| \****************************************************************************************/
 | |
| static void writeMatInBin( const Mat& mat, const string& filename )
 | |
| {
 | |
|     FILE* f = fopen( filename.c_str(), "wb");
 | |
|     if( f )
 | |
|     {
 | |
|         int type = mat.type();
 | |
|         fwrite( (void*)&mat.rows, sizeof(int), 1, f );
 | |
|         fwrite( (void*)&mat.cols, sizeof(int), 1, f );
 | |
|         fwrite( (void*)&type, sizeof(int), 1, f );
 | |
|         int dataSize = (int)(mat.step * mat.rows * mat.channels());
 | |
|         fwrite( (void*)&dataSize, sizeof(int), 1, f );
 | |
|         fwrite( (void*)mat.data, 1, dataSize, f );
 | |
|         fclose(f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Mat readMatFromBin( const string& filename )
 | |
| {
 | |
|     FILE* f = fopen( filename.c_str(), "rb" );
 | |
|     if( f )
 | |
|     {
 | |
|         int rows, cols, type, dataSize;
 | |
|         size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
 | |
|         size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
 | |
|         size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
 | |
|         size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
 | |
|         CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
 | |
| 
 | |
|         size_t step = dataSize / rows / CV_ELEM_SIZE(type);
 | |
|         CV_Assert(step >= (size_t)cols);
 | |
| 
 | |
|         Mat m = Mat( rows, step, type).colRange(0, cols);
 | |
| 
 | |
|         size_t elements_read = fread( m.ptr(), 1, dataSize, f );
 | |
|         CV_Assert(elements_read == (size_t)(dataSize));
 | |
|         fclose(f);
 | |
| 
 | |
|         return m;
 | |
|     }
 | |
|     return Mat();
 | |
| }
 | |
| 
 | |
| template<class Distance>
 | |
| class CV_DescriptorExtractorTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     typedef typename Distance::ValueType ValueType;
 | |
|     typedef typename Distance::ResultType DistanceType;
 | |
| 
 | |
|     CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
 | |
|                                 Distance d = Distance() ):
 | |
|             name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {}
 | |
| protected:
 | |
|     virtual void createDescriptorExtractor() {}
 | |
| 
 | |
|     void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
 | |
|     {
 | |
|         if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
 | |
|             ts->printf(cvtest::TS::LOG, "Valid size is (%d x %d) actual size is (%d x %d).\n", validDescriptors.rows, validDescriptors.cols, calcDescriptors.rows, calcDescriptors.cols);
 | |
|             ts->printf(cvtest::TS::LOG, "Valid type is %d  actual type is %d.\n", validDescriptors.type(), calcDescriptors.type());
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
 | |
| 
 | |
|         int dimension = validDescriptors.cols;
 | |
|         DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
 | |
|         for( int y = 0; y < validDescriptors.rows; y++ )
 | |
|         {
 | |
|             DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
 | |
|             if( dist > curMaxDist )
 | |
|                 curMaxDist = dist;
 | |
|         }
 | |
| 
 | |
|         stringstream ss;
 | |
|         ss << "Max distance between valid and computed descriptors " << curMaxDist;
 | |
|         if( curMaxDist < maxDist )
 | |
|             ss << "." << endl;
 | |
|         else
 | |
|         {
 | |
|             ss << ">" << maxDist  << " - bad accuracy!"<< endl;
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         }
 | |
|         ts->printf(cvtest::TS::LOG,  ss.str().c_str() );
 | |
|     }
 | |
| 
 | |
|     void emptyDataTest()
 | |
|     {
 | |
|         assert( !dextractor.empty() );
 | |
| 
 | |
|         // One image.
 | |
|         Mat image;
 | |
|         vector<KeyPoint> keypoints;
 | |
|         Mat descriptors;
 | |
| 
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( image, keypoints, descriptors );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
| 
 | |
|         image.create( 50, 50, CV_8UC3 );
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( image, keypoints, descriptors );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
| 
 | |
|         // Several images.
 | |
|         vector<Mat> images;
 | |
|         vector<vector<KeyPoint> > keypointsCollection;
 | |
|         vector<Mat> descriptorsCollection;
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( images, keypointsCollection, descriptorsCollection );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void regressionTest()
 | |
|     {
 | |
|         assert( !dextractor.empty() );
 | |
| 
 | |
|         // Read the test image.
 | |
|         string imgFilename =  string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
 | |
| 
 | |
|         Mat img = imread( imgFilename );
 | |
|         if( img.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         vector<KeyPoint> keypoints;
 | |
|         FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
 | |
|         if( fs.isOpened() )
 | |
|         {
 | |
|             read( fs.getFirstTopLevelNode(), keypoints );
 | |
| 
 | |
|             Mat calcDescriptors;
 | |
|             double t = (double)getTickCount();
 | |
|             dextractor->compute( img, keypoints, calcDescriptors );
 | |
|             t = getTickCount() - t;
 | |
|             ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows );
 | |
| 
 | |
|             if( calcDescriptors.rows != (int)keypoints.size() )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of keypoints is            %d.\n", (int)keypoints.size() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
 | |
|                 ts->printf( cvtest::TS::LOG, "Expected size is   %d.\n", dextractor->descriptorSize() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
 | |
|                 ts->printf( cvtest::TS::LOG, "Expected type is   %d.\n", dextractor->descriptorType() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // TODO read and write descriptor extractor parameters and check them
 | |
|             Mat validDescriptors = readDescriptors();
 | |
|             if( !validDescriptors.empty() )
 | |
|                 compareDescriptors( validDescriptors, calcDescriptors );
 | |
|             else
 | |
|             {
 | |
|                 if( !writeDescriptors( calcDescriptors ) )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
 | |
|                     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
 | |
|             fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
 | |
|             if( fs.isOpened() )
 | |
|             {
 | |
|                 SurfFeatureDetector fd;
 | |
|                 fd.detect(img, keypoints);
 | |
|                 write( fs, "keypoints", keypoints );
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void run(int)
 | |
|     {
 | |
|         createDescriptorExtractor();
 | |
|         if( dextractor.empty() )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         emptyDataTest();
 | |
|         regressionTest();
 | |
| 
 | |
|         ts->set_failed_test_info( cvtest::TS::OK );
 | |
|     }
 | |
| 
 | |
|     virtual Mat readDescriptors()
 | |
|     {
 | |
|         Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     virtual bool writeDescriptors( Mat& descs )
 | |
|     {
 | |
|         writeMatInBin( descs,  string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     string name;
 | |
|     const DistanceType maxDist;
 | |
|     Ptr<DescriptorExtractor> dextractor;
 | |
|     Distance distance;
 | |
| 
 | |
| private:
 | |
|     CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
 | |
| };
 | |
| 
 | |
| /*template<typename T, typename Distance>
 | |
| class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest<Distance>
 | |
| {
 | |
| public:
 | |
|     CV_CalonderDescriptorExtractorTest( const char* testName, float _normDif, float _prevTime ) :
 | |
|             CV_DescriptorExtractorTest<Distance>( testName, _normDif, Ptr<DescriptorExtractor>(), _prevTime )
 | |
|     {}
 | |
| 
 | |
| protected:
 | |
|     virtual void createDescriptorExtractor()
 | |
|     {
 | |
|         CV_DescriptorExtractorTest<Distance>::dextractor =
 | |
|                 new CalonderDescriptorExtractor<T>( string(CV_DescriptorExtractorTest<Distance>::ts->get_data_path()) +
 | |
|                                                     FEATURES2D_DIR + "/calonder_classifier.rtc");
 | |
|     }
 | |
| };*/
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                       Algorithmic tests for descriptor matchers                        *
 | |
| \****************************************************************************************/
 | |
| class CV_DescriptorMatcherTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_DescriptorMatcherTest( const string& _name, const Ptr<DescriptorMatcher>& _dmatcher, float _badPart ) :
 | |
|         badPart(_badPart), name(_name), dmatcher(_dmatcher)
 | |
|         {}
 | |
| protected:
 | |
|     static const int dim = 500;
 | |
|     static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
 | |
|     static const int countFactor = 4; // do not change it
 | |
|     const float badPart;
 | |
| 
 | |
|     virtual void run( int );
 | |
|     void generateData( Mat& query, Mat& train );
 | |
| 
 | |
|     void emptyDataTest();
 | |
|     void matchTest( const Mat& query, const Mat& train );
 | |
|     void knnMatchTest( const Mat& query, const Mat& train );
 | |
|     void radiusMatchTest( const Mat& query, const Mat& train );
 | |
| 
 | |
|     string name;
 | |
|     Ptr<DescriptorMatcher> dmatcher;
 | |
| 
 | |
| private:
 | |
|     CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; }
 | |
| };
 | |
| 
 | |
| void CV_DescriptorMatcherTest::emptyDataTest()
 | |
| {
 | |
|     assert( !dmatcher.empty() );
 | |
|     Mat queryDescriptors, trainDescriptors, mask;
 | |
|     vector<Mat> trainDescriptorCollection, masks;
 | |
|     vector<DMatch> matches;
 | |
|     vector<vector<DMatch> > vmatches;
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->match( queryDescriptors, trainDescriptors, matches, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->add( trainDescriptorCollection );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->match( queryDescriptors, matches, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train )
 | |
| {
 | |
|     RNG& rng = theRNG();
 | |
| 
 | |
|     // Generate query descriptors randomly.
 | |
|     // Descriptor vector elements are integer values.
 | |
|     Mat buf( queryDescCount, dim, CV_32SC1 );
 | |
|     rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
 | |
|     buf.convertTo( query, CV_32FC1 );
 | |
| 
 | |
|     // Generate train decriptors as follows:
 | |
|     // copy each query descriptor to train set countFactor times
 | |
|     // and perturb some one element of the copied descriptors in
 | |
|     // in ascending order. General boundaries of the perturbation
 | |
|     // are (0.f, 1.f).
 | |
|     train.create( query.rows*countFactor, query.cols, CV_32FC1 );
 | |
|     float step = 1.f / countFactor;
 | |
|     for( int qIdx = 0; qIdx < query.rows; qIdx++ )
 | |
|     {
 | |
|         Mat queryDescriptor = query.row(qIdx);
 | |
|         for( int c = 0; c < countFactor; c++ )
 | |
|         {
 | |
|             int tIdx = qIdx * countFactor + c;
 | |
|             Mat trainDescriptor = train.row(tIdx);
 | |
|             queryDescriptor.copyTo( trainDescriptor );
 | |
|             int elem = rng(dim);
 | |
|             float diff = rng.uniform( step*c, step*(c+1) );
 | |
|             trainDescriptor.at<float>(0, elem) += diff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
| 
 | |
|     // test const version of match()
 | |
|     {
 | |
|         vector<DMatch> matches;
 | |
|         dmatcher->match( query, train, matches );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 DMatch match = matches[i];
 | |
|                 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
 | |
|                     badCount++;
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of match() with add()
 | |
|     {
 | |
|         vector<DMatch> matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->match( query, matches, masks );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 DMatch match = matches[i];
 | |
|                 int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|                 {
 | |
|                     if( i < queryDescCount/2 )
 | |
|                     {
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) )
 | |
|                             badCount++;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) )
 | |
|                             badCount++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
| 
 | |
|     // test const version of knnMatch()
 | |
|     {
 | |
|         const int knn = 3;
 | |
| 
 | |
|         vector<vector<DMatch> > matches;
 | |
|         dmatcher->knnMatch( query, train, matches, knn );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != knn )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     int localBadCount = 0;
 | |
|                     for( int k = 0; k < knn; k++ )
 | |
|                     {
 | |
|                         DMatch match = matches[i][k];
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) )
 | |
|                             localBadCount++;
 | |
|                     }
 | |
|                     badCount += localBadCount > 0 ? 1 : 0;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of knnMatch() with add()
 | |
|     {
 | |
|         const int knn = 2;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->knnMatch( query, matches, knn, masks );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != knn )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     int localBadCount = 0;
 | |
|                     for( int k = 0; k < knn; k++ )
 | |
|                     {
 | |
|                         DMatch match = matches[i][k];
 | |
|                         {
 | |
|                             if( i < queryDescCount/2 )
 | |
|                             {
 | |
|                                 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
 | |
|                                     (match.imgIdx != 0) )
 | |
|                                     localBadCount++;
 | |
|                             }
 | |
|                             else
 | |
|                             {
 | |
|                                 if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
 | |
|                                     (match.imgIdx != 1) )
 | |
|                                     localBadCount++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     badCount += localBadCount > 0 ? 1 : 0;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
|     // test const version of match()
 | |
|     {
 | |
|         const float radius = 1.f/countFactor;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         dmatcher->radiusMatch( query, train, matches, radius );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != 1 )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     DMatch match = matches[i][0];
 | |
|                     if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
 | |
|                         badCount++;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of match() with add()
 | |
|     {
 | |
|         int n = 3;
 | |
|         const float radius = 1.f/countFactor * n;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->radiusMatch( query, matches, radius, masks );
 | |
| 
 | |
|         //int curRes = cvtest::TS::OK;
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
| 
 | |
|         int badCount = 0;
 | |
|         int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|         int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n;
 | |
|         for( size_t i = 0; i < matches.size(); i++ )
 | |
|         {
 | |
|             if( (int)matches[i].size() != needMatchCount )
 | |
|                 badCount++;
 | |
|             else
 | |
|             {
 | |
|                 int localBadCount = 0;
 | |
|                 for( int k = 0; k < needMatchCount; k++ )
 | |
|                 {
 | |
|                     DMatch match = matches[i][k];
 | |
|                     {
 | |
|                         if( i < queryDescCount/2 )
 | |
|                         {
 | |
|                             if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
 | |
|                                 (match.imgIdx != 0) )
 | |
|                                 localBadCount++;
 | |
|                         }
 | |
|                         else
 | |
|                         {
 | |
|                             if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
 | |
|                                 (match.imgIdx != 1) )
 | |
|                                 localBadCount++;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 badCount += localBadCount > 0 ? 1 : 0;
 | |
|             }
 | |
|         }
 | |
|         if( (float)badCount > (float)queryDescCount*badPart )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
 | |
|                         (float)badCount/(float)queryDescCount );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::run( int )
 | |
| {
 | |
|     Mat query, train;
 | |
|     generateData( query, train );
 | |
| 
 | |
|     matchTest( query, train );
 | |
| 
 | |
|     knnMatchTest( query, train );
 | |
| 
 | |
|     radiusMatchTest( query, train );
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                Tests registrations                                     *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Detectors
 | |
|  */
 | |
| 
 | |
| 
 | |
| TEST( Features2d_Detector_SIFT, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-sift", FeatureDetector::create("SIFT") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_SURF, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-surf", FeatureDetector::create("SURF") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Descriptors
 | |
|  */
 | |
| TEST( Features2d_DescriptorExtractor_SIFT, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<L2<float> > test( "descriptor-sift", 0.03f,
 | |
|                                                   DescriptorExtractor::create("SIFT") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_SURF, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<L2<float> > test( "descriptor-surf",  0.05f,
 | |
|                                                  DescriptorExtractor::create("SURF") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_OpponentSIFT, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-sift", 0.18f,
 | |
|                                                  DescriptorExtractor::create("OpponentSIFT") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_OpponentSURF, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-surf",  0.3f,
 | |
|                                                  DescriptorExtractor::create("OpponentSURF") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| /*#if CV_SSE2
 | |
| TEST( Features2d_DescriptorExtractor_Calonder_uchar, regression )
 | |
| {
 | |
|     CV_CalonderDescriptorExtractorTest<uchar, L2<uchar> > test( "descriptor-calonder-uchar",
 | |
|                                                                 std::numeric_limits<float>::epsilon() + 1,
 | |
|                                                                 0.0132175f );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_Calonder_float, regression )
 | |
| {
 | |
|     CV_CalonderDescriptorExtractorTest<float, L2<float> > test( "descriptor-calonder-float",
 | |
|                                                                 std::numeric_limits<float>::epsilon(),
 | |
|                                                                 0.0221308f );
 | |
|     test.safe_run();
 | |
| }
 | |
| #endif*/ // CV_SSE2
 | |
| 
 | |
| TEST(Features2d_BruteForceDescriptorMatcher_knnMatch, regression)
 | |
| {
 | |
|     const int sz = 100;
 | |
|     const int k = 3;
 | |
| 
 | |
|     Ptr<DescriptorExtractor> ext = DescriptorExtractor::create("SURF");
 | |
|     ASSERT_TRUE(ext != NULL);
 | |
| 
 | |
|     Ptr<FeatureDetector> det = FeatureDetector::create("SURF");
 | |
|     //"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"
 | |
|     ASSERT_TRUE(det != NULL);
 | |
| 
 | |
|     Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
 | |
|     ASSERT_TRUE(matcher != NULL);
 | |
| 
 | |
|     Mat imgT(sz, sz, CV_8U, Scalar(255));
 | |
|     line(imgT, Point(20, sz/2), Point(sz-21, sz/2), Scalar(100), 2);
 | |
|     line(imgT, Point(sz/2, 20), Point(sz/2, sz-21), Scalar(100), 2);
 | |
|     vector<KeyPoint> kpT;
 | |
|     kpT.push_back( KeyPoint(50, 50, 16, 0, 20000, 1, -1) );
 | |
|     kpT.push_back( KeyPoint(42, 42, 16, 160, 10000, 1, -1) );
 | |
|     Mat descT;
 | |
|     ext->compute(imgT, kpT, descT);
 | |
| 
 | |
|     Mat imgQ(sz, sz, CV_8U, Scalar(255));
 | |
|     line(imgQ, Point(30, sz/2), Point(sz-31, sz/2), Scalar(100), 3);
 | |
|     line(imgQ, Point(sz/2, 30), Point(sz/2, sz-31), Scalar(100), 3);
 | |
|     vector<KeyPoint> kpQ;
 | |
|     det->detect(imgQ, kpQ);
 | |
|     Mat descQ;
 | |
|     ext->compute(imgQ, kpQ, descQ);
 | |
| 
 | |
|     vector<vector<DMatch> > matches;
 | |
| 
 | |
|     matcher->knnMatch(descQ, descT, matches, k);
 | |
| 
 | |
|     //cout << "\nBest " << k << " matches to " << descT.rows << " train desc-s." << endl;
 | |
|     ASSERT_EQ(descQ.rows, static_cast<int>(matches.size()));
 | |
|     for(size_t i = 0; i<matches.size(); i++)
 | |
|     {
 | |
|         //cout << "\nmatches[" << i << "].size()==" << matches[i].size() << endl;
 | |
|         ASSERT_GE(min(k, descT.rows), static_cast<int>(matches[i].size()));
 | |
|         for(size_t j = 0; j<matches[i].size(); j++)
 | |
|         {
 | |
|             //cout << "\t" << matches[i][j].queryIdx << " -> " << matches[i][j].trainIdx << endl;
 | |
|             ASSERT_EQ(matches[i][j].queryIdx, static_cast<int>(i));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*TEST(Features2d_DescriptorExtractorParamTest, regression)
 | |
| {
 | |
|     Ptr<DescriptorExtractor> s = DescriptorExtractor::create("SURF");
 | |
|     ASSERT_STREQ(s->paramHelp("extended").c_str(), "");
 | |
| }
 | |
| */
 | |
| 
 | |
| class CV_DetectPlanarTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_DetectPlanarTest(const string& _fname, int _min_ninliers) : fname(_fname), min_ninliers(_min_ninliers) {}
 | |
| 
 | |
| protected:
 | |
|     void run(int)
 | |
|     {
 | |
|         Ptr<Feature2D> f = Algorithm::create<Feature2D>("Feature2D." + fname);
 | |
|         if(f.empty())
 | |
|             return;
 | |
|         string path = string(ts->get_data_path()) + "detectors_descriptors_evaluation/planar/";
 | |
|         string imgname1 = path + "box.png";
 | |
|         string imgname2 = path + "box_in_scene.png";
 | |
|         Mat img1 = imread(imgname1, 0);
 | |
|         Mat img2 = imread(imgname2, 0);
 | |
|         if( img1.empty() || img2.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "missing %s and/or %s\n", imgname1.c_str(), imgname2.c_str());
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
|         vector<KeyPoint> kpt1, kpt2;
 | |
|         Mat d1, d2;
 | |
|         f->operator()(img1, Mat(), kpt1, d1);
 | |
|         f->operator()(img1, Mat(), kpt2, d2);
 | |
|         for( size_t i = 0; i < kpt1.size(); i++ )
 | |
|             CV_Assert(kpt1[i].response > 0 );
 | |
|         for( size_t i = 0; i < kpt2.size(); i++ )
 | |
|             CV_Assert(kpt2[i].response > 0 );
 | |
| 
 | |
|         vector<DMatch> matches;
 | |
|         BFMatcher(NORM_L2, true).match(d1, d2, matches);
 | |
| 
 | |
|         vector<Point2f> pt1, pt2;
 | |
|         for( size_t i = 0; i < matches.size(); i++ ) {
 | |
|             pt1.push_back(kpt1[matches[i].queryIdx].pt);
 | |
|             pt2.push_back(kpt2[matches[i].trainIdx].pt);
 | |
|         }
 | |
| 
 | |
|         Mat inliers, H = findHomography(pt1, pt2, RANSAC, 10, inliers);
 | |
|         int ninliers = countNonZero(inliers);
 | |
| 
 | |
|         if( ninliers < min_ninliers )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "too little inliers (%d) vs expected %d\n", ninliers, min_ninliers);
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     string fname;
 | |
|     int min_ninliers;
 | |
| };
 | |
| 
 | |
| TEST(Features2d_SIFTHomographyTest, regression) { CV_DetectPlanarTest test("SIFT", 80); test.safe_run(); }
 | |
| TEST(Features2d_SURFHomographyTest, regression) { CV_DetectPlanarTest test("SURF", 80); test.safe_run(); }
 | |
| 
 | |
| class FeatureDetectorUsingMaskTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     FeatureDetectorUsingMaskTest(const Ptr<FeatureDetector>& featureDetector) :
 | |
|         featureDetector_(featureDetector)
 | |
|     {
 | |
|         CV_Assert(!featureDetector_.empty());
 | |
|     }
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     void run(int)
 | |
|     {
 | |
|         const int nStepX = 2;
 | |
|         const int nStepY = 2;
 | |
| 
 | |
|         const string imageFilename = string(ts->get_data_path()) + "/features2d/tsukuba.png";
 | |
| 
 | |
|         Mat image = imread(imageFilename);
 | |
|         if(image.empty())
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
 | |
|             ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         Mat mask(image.size(), CV_8U);
 | |
| 
 | |
|         const int stepX = image.size().width / nStepX;
 | |
|         const int stepY = image.size().height / nStepY;
 | |
| 
 | |
|         vector<KeyPoint> keyPoints;
 | |
|         vector<Point2f> points;
 | |
|         for(int i=0; i<nStepX; ++i)
 | |
|             for(int j=0; j<nStepY; ++j)
 | |
|             {
 | |
| 
 | |
|                 mask.setTo(0);
 | |
|                 Rect whiteArea(i * stepX, j * stepY, stepX, stepY);
 | |
|                 mask(whiteArea).setTo(255);
 | |
| 
 | |
|                 featureDetector_->detect(image, keyPoints, mask);
 | |
|                 KeyPoint::convert(keyPoints, points);
 | |
| 
 | |
|                 for(size_t k=0; k<points.size(); ++k)
 | |
|                 {
 | |
|                     if ( !whiteArea.contains(points[k]) )
 | |
|                     {
 | |
|                         ts->printf(cvtest::TS::LOG, "The feature point is outside of the mask.");
 | |
|                         ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
 | |
|                         return;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         ts->set_failed_test_info( cvtest::TS::OK );
 | |
|     }
 | |
| 
 | |
|     Ptr<FeatureDetector> featureDetector_;
 | |
| };
 | |
| 
 | |
| TEST(Features2d_SIFT_using_mask, regression)
 | |
| {
 | |
|     FeatureDetectorUsingMaskTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"));
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST(DISABLED_Features2d_SURF_using_mask, regression)
 | |
| {
 | |
|     FeatureDetectorUsingMaskTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"));
 | |
|     test.safe_run();
 | |
| }
 |