opencv/modules/contrib/src/fuzzymeanshifttracker.cpp

723 lines
15 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install, copy or use the software.
//
// Copyright (C) 2009, Farhad Dadgostar
// Intel Corporation and third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CvFuzzyPoint::CvFuzzyPoint(double _x, double _y)
{
x = _x;
y = _y;
};
bool CvFuzzyCurve::between(double x, double x1, double x2)
{
if ((x >= x1) && (x <= x2))
return true;
else if ((x >= x2) && (x <= x1))
return true;
return false;
};
CvFuzzyCurve::CvFuzzyCurve()
{
value = 0;
};
CvFuzzyCurve::~CvFuzzyCurve()
{
// nothing to do
};
void CvFuzzyCurve::setCentre(double _centre)
{
centre = _centre;
};
double CvFuzzyCurve::getCentre()
{
return centre;
};
void CvFuzzyCurve::clear()
{
points.clear();
};
void CvFuzzyCurve::addPoint(double x, double y)
{
CvFuzzyPoint *point;
point = new CvFuzzyPoint(x, y);
points.push_back(*point);
};
double CvFuzzyCurve::calcValue(double param)
{
int size = (int)points.size();
double x1, y1, x2, y2, m, y;
for (int i = 1; i < size; i++)
{
x1 = points[i-1].x;
x2 = points[i].x;
if (between(param, x1, x2)) {
y1 = points[i-1].y;
y2 = points[i].y;
if (x2 == x1)
return y2;
m = (y2-y1)/(x2-x1);
y = m*(param-x1)+y1;
return y;
}
}
return 0;
};
double CvFuzzyCurve::getValue()
{
return value;
};
void CvFuzzyCurve::setValue(double _value)
{
value = _value;
};
CvFuzzyFunction::CvFuzzyFunction()
{
// nothing to do
};
CvFuzzyFunction::~CvFuzzyFunction()
{
curves.clear();
};
void CvFuzzyFunction::addCurve(CvFuzzyCurve *curve, double value)
{
curves.push_back(*curve);
curve->setValue(value);
};
void CvFuzzyFunction::resetValues()
{
int numCurves = (int)curves.size();
for (int i = 0; i < numCurves; i++)
curves[i].setValue(0);
};
double CvFuzzyFunction::calcValue()
{
double s1 = 0, s2 = 0, v;
int numCurves = (int)curves.size();
for (int i = 0; i < numCurves; i++)
{
v = curves[i].getValue();
s1 += curves[i].getCentre() * v;
s2 += v;
}
if (s2 != 0)
return s1/s2;
else
return 0;
};
CvFuzzyCurve *CvFuzzyFunction::newCurve()
{
CvFuzzyCurve *c;
c = new CvFuzzyCurve();
addCurve(c);
return c;
};
CvFuzzyRule::CvFuzzyRule()
{
fuzzyInput1 = NULL;
fuzzyInput2 = NULL;
fuzzyOutput = NULL;
};
CvFuzzyRule::~CvFuzzyRule()
{
if (fuzzyInput1 != NULL)
delete fuzzyInput1;
if (fuzzyInput2 != NULL)
delete fuzzyInput2;
if (fuzzyOutput != NULL)
delete fuzzyOutput;
};
void CvFuzzyRule::setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
{
fuzzyInput1 = c1;
fuzzyInput2 = c2;
fuzzyOutput = o1;
};
double CvFuzzyRule::calcValue(double param1, double param2)
{
double v1, v2;
v1 = fuzzyInput1->calcValue(param1);
if (fuzzyInput2 != NULL)
{
v2 = fuzzyInput2->calcValue(param2);
if (v1 < v2)
return v1;
else
return v2;
}
else
return v1;
};
CvFuzzyCurve *CvFuzzyRule::getOutputCurve()
{
return fuzzyOutput;
};
CvFuzzyController::CvFuzzyController()
{
// nothing to do
};
CvFuzzyController::~CvFuzzyController()
{
int size = (int)rules.size();
for(int i = 0; i < size; i++)
delete rules[i];
};
void CvFuzzyController::addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
{
CvFuzzyRule *f = new CvFuzzyRule();
rules.push_back(f);
f->setRule(c1, c2, o1);
};
double CvFuzzyController::calcOutput(double param1, double param2)
{
double v;
CvFuzzyFunction list;
int size = (int)rules.size();
for(int i = 0; i < size; i++)
{
v = rules[i]->calcValue(param1, param2);
if (v != 0)
list.addCurve(rules[i]->getOutputCurve(), v);
}
v = list.calcValue();
return v;
};
CvFuzzyMeanShiftTracker::FuzzyResizer::FuzzyResizer()
{
CvFuzzyCurve *i1L, *i1M, *i1H;
CvFuzzyCurve *oS, *oZE, *oE;
CvFuzzyCurve *c;
double MedStart = 0.1, MedWidth = 0.15;
c = iInput.newCurve();
c->addPoint(0, 1);
c->addPoint(0.1, 0);
c->setCentre(0);
i1L = c;
c = iInput.newCurve();
c->addPoint(0.05, 0);
c->addPoint(MedStart, 1);
c->addPoint(MedStart+MedWidth, 1);
c->addPoint(MedStart+MedWidth+0.05, 0);
c->setCentre(MedStart+(MedWidth/2));
i1M = c;
c = iInput.newCurve();
c->addPoint(MedStart+MedWidth, 0);
c->addPoint(1, 1);
c->addPoint(1000, 1);
c->setCentre(1);
i1H = c;
c = iOutput.newCurve();
c->addPoint(-10000, 1);
c->addPoint(-5, 1);
c->addPoint(-0.5, 0);
c->setCentre(-5);
oS = c;
c = iOutput.newCurve();
c->addPoint(-1, 0);
c->addPoint(-0.05, 1);
c->addPoint(0.05, 1);
c->addPoint(1, 0);
c->setCentre(0);
oZE = c;
c = iOutput.newCurve();
c->addPoint(-0.5, 0);
c->addPoint(5, 1);
c->addPoint(1000, 1);
c->setCentre(5);
oE = c;
fuzzyController.addRule(i1L, NULL, oS);
fuzzyController.addRule(i1M, NULL, oZE);
fuzzyController.addRule(i1H, NULL, oE);
};
int CvFuzzyMeanShiftTracker::FuzzyResizer::calcOutput(double edgeDensity, double density)
{
return (int)fuzzyController.calcOutput(edgeDensity, density);
};
CvFuzzyMeanShiftTracker::SearchWindow::SearchWindow()
{
x = 0;
y = 0;
width = 0;
height = 0;
maxWidth = 0;
maxHeight = 0;
xGc = 0;
yGc = 0;
m00 = 0;
m01 = 0;
m10 = 0;
m11 = 0;
m02 = 0;
m20 = 0;
ellipseHeight = 0;
ellipseWidth = 0;
ellipseAngle = 0;
density = 0;
depthLow = 0;
depthHigh = 0;
fuzzyResizer = NULL;
};
CvFuzzyMeanShiftTracker::SearchWindow::~SearchWindow()
{
if (fuzzyResizer != NULL)
delete fuzzyResizer;
}
void CvFuzzyMeanShiftTracker::SearchWindow::setSize(int _x, int _y, int _width, int _height)
{
x = _x;
y = _y;
width = _width;
height = _height;
if (x < 0)
x = 0;
if (y < 0)
y = 0;
if (x + width > maxWidth)
width = maxWidth - x;
if (y + height > maxHeight)
height = maxHeight - y;
};
void CvFuzzyMeanShiftTracker::SearchWindow::initDepthValues(IplImage *maskImage, IplImage *depthMap)
{
unsigned int d=0, mind = 0xFFFF, maxd = 0, m0 = 0, m1 = 0, mc, dd;
unsigned char *data = NULL;
unsigned short *depthData = NULL;
for (int j = 0; j < height; j++)
{
data = (unsigned char *)(maskImage->imageData + (maskImage->widthStep * (j + y)) + x);
if (depthMap)
depthData = (unsigned short *)(depthMap->imageData + (depthMap->widthStep * (j + y)) + x);
for (int i = 0; i < width; i++)
{
if (*data)
{
m0 += 1;
if (depthData)
{
if (*depthData)
{
m1 += d;
if (d < mind)
mind = d;
if (d > maxd)
maxd = d;
}
depthData++;
}
}
data++;
}
}
if (m0 > 0)
{
mc = m1/m0;
if ((mc - mind) > (maxd - mc))
dd = maxd - mc;
else
dd = mc - mind;
dd = dd - dd/10;
depthHigh = mc + dd;
depthLow = mc - dd;
}
else
{
depthHigh = 32000;
depthLow = 0;
}
};
bool CvFuzzyMeanShiftTracker::SearchWindow::shift()
{
if ((xGc != (width/2)) || (yGc != (height/2)))
{
setSize(x + (xGc-(width/2)), y + (yGc-(height/2)), width, height);
return true;
}
else
{
return false;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth)
{
m00 = 0;
m10 = 0;
m01 = 0;
m11 = 0;
density = 0;
m02 = 0;
m20 = 0;
ellipseHeight = 0;
ellipseWidth = 0;
maxWidth = maskImage->width;
maxHeight = maskImage->height;
if (initDepth)
initDepthValues(maskImage, depthMap);
unsigned char *maskData = NULL;
unsigned short *depthData = NULL, depth;
bool isOk;
unsigned long count;
verticalEdgeLeft = 0;
verticalEdgeRight = 0;
horizontalEdgeTop = 0;
horizontalEdgeBottom = 0;
for (int j = 0; j < height; j++)
{
maskData = (unsigned char *)(maskImage->imageData + (maskImage->widthStep * (j + y)) + x);
if (depthMap)
depthData = (unsigned short *)(depthMap->imageData + (depthMap->widthStep * (j + y)) + x);
count = 0;
for (int i = 0; i < width; i++)
{
if (*maskData)
{
isOk = true;
if (depthData)
{
depth = (*depthData);
if ((depth > depthHigh) || (depth < depthLow))
isOk = false;
depthData++;
}
if (isOk)
{
m00++;
m01 += j;
m10 += i;
m02 += (j * j);
m20 += (i * i);
m11 += (j * i);
if (i == 0)
verticalEdgeLeft++;
else if (i == width-1)
verticalEdgeRight++;
else if (j == 0)
horizontalEdgeTop++;
else if (j == height-1)
horizontalEdgeBottom++;
count++;
}
}
maskData++;
}
}
if (m00 > 0)
{
xGc = (m10 / m00);
yGc = (m01 / m00);
double a, b, c, e1, e2, e3;
a = ((double)m20/(double)m00)-(xGc * xGc);
b = 2*(((double)m11/(double)m00)-(xGc * yGc));
c = ((double)m02/(double)m00)-(yGc * yGc);
e1 = a+c;
e3 = a-c;
e2 = sqrt((b*b)+(e3*e3));
ellipseHeight = int(sqrt(0.5*(e1+e2)));
ellipseWidth = int(sqrt(0.5*(e1-e2)));
if (e3 == 0)
ellipseAngle = 0;
else
ellipseAngle = 0.5*atan(b/e3);
density = (double)m00/(double)(width * height);
}
else
{
xGc = width / 2;
yGc = height / 2;
ellipseHeight = 0;
ellipseWidth = 0;
ellipseAngle = 0;
density = 0;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh) {
int x1 = horizontalEdgeTop;
int x2 = horizontalEdgeBottom;
int y1 = verticalEdgeLeft;
int y2 = verticalEdgeRight;
int gx = (width*2)/5;
int gy = (height*2)/5;
int lx = width/10;
int ly = height/10;
resizeDy = 0;
resizeDh = 0;
resizeDx = 0;
resizeDw = 0;
if (x1 > gx) {
resizeDy = -1;
} else if (x1 < lx) {
resizeDy = +1;
}
if (x2 > gx) {
resizeDh = resizeDy + 1;
} else if (x2 < lx) {
resizeDh = - (resizeDy + 1);
} else {
resizeDh = - resizeDy;
}
if (y1 > gy) {
resizeDx = -1;
} else if (y1 < ly) {
resizeDx = +1;
}
if (y2 > gy) {
resizeDw = resizeDx + 1;
} else if (y2 < ly) {
resizeDw = - (resizeDx + 1);
} else {
resizeDw = - resizeDx;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
{
int newWidth, newHeight, dx, dy;
double px, py;
newWidth = int(sqrt(double(m00)*1.3));
newHeight = int(newWidth*1.2);
dx = (newWidth - width);
dy = (newHeight - height);
px = (double)xGc/(double)width;
py = (double)yGc/(double)height;
resizeDx = (int)(px*dx);
resizeDy = (int)(py*dy);
resizeDw = (int)((1-px)*dx);
resizeDh = (int)((1-py)*dy);
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
{
double dx1=0, dx2, dy1, dy2;
resizeDy = 0;
resizeDh = 0;
resizeDx = 0;
resizeDw = 0;
if (fuzzyResizer == NULL)
fuzzyResizer = new FuzzyResizer();
dx2 = fuzzyResizer->calcOutput(double(verticalEdgeRight)/double(height), density);
if (dx1 == dx2)
{
resizeDx = int(-dx1);
resizeDw = int(dx1+dx2);
}
dy1 = fuzzyResizer->calcOutput(double(horizontalEdgeTop)/double(width), density);
dy2 = fuzzyResizer->calcOutput(double(horizontalEdgeBottom)/double(width), density);
dx1 = fuzzyResizer->calcOutput(double(verticalEdgeLeft)/double(height), density);
dx2 = fuzzyResizer->calcOutput(double(verticalEdgeRight)/double(height), density);
//if (dx1 == dx2)
{
resizeDx = int(-dx1);
resizeDw = int(dx1+dx2);
}
dy1 = fuzzyResizer->calcOutput(double(horizontalEdgeTop)/double(width), density);
dy2 = fuzzyResizer->calcOutput(double(horizontalEdgeBottom)/double(width), density);
//if (dy1 == dy2)
{
resizeDy = int(-dy1);
resizeDh = int(dy1+dy2);
}
};
bool CvFuzzyMeanShiftTracker::SearchWindow::meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth)
{
numShifts = 0;
do
{
extractInfo(maskImage, depthMap, initDepth);
if (! shift())
return true;
} while (++numShifts < maxIteration);
return false;
};
void CvFuzzyMeanShiftTracker::findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth)
{
int resizeDx, resizeDy, resizeDw, resizeDh;
resizeDx = 0;
resizeDy = 0;
resizeDw = 0;
resizeDh = 0;
searchWindow.numIters = 0;
for (int i = 0; i < maxIteration; i++)
{
searchWindow.numIters++;
searchWindow.meanShift(maskImage, depthMap, MaxMeanShiftIteration, initDepth);
switch (resizeMethod)
{
case rmEdgeDensityLinear :
searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
break;
case rmEdgeDensityFuzzy :
//searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
searchWindow.getResizeAttribsEdgeDensityFuzzy(resizeDx, resizeDy, resizeDw, resizeDh);
break;
case rmInnerDensity :
searchWindow.getResizeAttribsInnerDensity(resizeDx, resizeDy, resizeDw, resizeDh);
break;
default:
searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
}
searchWindow.ldx = resizeDx;
searchWindow.ldy = resizeDy;
searchWindow.ldw = resizeDw;
searchWindow.ldh = resizeDh;
if ((resizeDx == 0) && (resizeDy == 0) && (resizeDw == 0) && (resizeDh == 0))
break;
searchWindow.setSize(searchWindow.x + resizeDx, searchWindow.y + resizeDy, searchWindow.width + resizeDw, searchWindow.height + resizeDh);
}
};
CvFuzzyMeanShiftTracker::CvFuzzyMeanShiftTracker()
{
searchMode = tsSetWindow;
};
CvFuzzyMeanShiftTracker::~CvFuzzyMeanShiftTracker()
{
// nothing to do
};
void CvFuzzyMeanShiftTracker::track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass)
{
bool initDepth = false;
if (resetSearch)
searchMode = tsSetWindow;
switch (searchMode)
{
case tsDisabled:
return;
case tsSearching:
return;
case tsSetWindow:
kernel.maxWidth = maskImage->width;
kernel.maxHeight = maskImage->height;
kernel.setSize(0, 0, maskImage->width, maskImage->height);
initDepth = true;
case tsTracking:
searchMode = tsSearching;
findOptimumSearchWindow(kernel, maskImage, depthMap, MaxSetSizeIteration, resizeMethod, initDepth);
if ((kernel.density == 0) || (kernel.m00 < minKernelMass))
searchMode = tsSetWindow;
else
searchMode = tsTracking;
}
};