2895 lines
81 KiB
C++
2895 lines
81 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
/****************************************************************************************\
|
|
* [scaled] Identity matrix initialization *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv {
|
|
|
|
void swap( Mat& a, Mat& b )
|
|
{
|
|
/*int *ap = (int*)&a, *bp = (int*)&b;
|
|
size_t i, n = sizeof(Mat)/sizeof(ap[0]);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
std::swap(ap[i], bp[i]);*/
|
|
std::swap(a.flags, b.flags);
|
|
std::swap(a.dims, b.dims);
|
|
std::swap(a.rows, b.rows);
|
|
std::swap(a.cols, b.cols);
|
|
std::swap(a.data, b.data);
|
|
std::swap(a.refcount, b.refcount);
|
|
std::swap(a.datastart, b.datastart);
|
|
std::swap(a.dataend, b.dataend);
|
|
std::swap(a.datalimit, b.datalimit);
|
|
std::swap(a.allocator, b.allocator);
|
|
|
|
std::swap(a.size.p, b.size.p);
|
|
std::swap(a.step.p, b.step.p);
|
|
std::swap(a.step.buf[0], b.step.buf[0]);
|
|
std::swap(a.step.buf[1], b.step.buf[1]);
|
|
|
|
if( a.step.p == b.step.buf )
|
|
{
|
|
a.step.p = a.step.buf;
|
|
a.size.p = &a.rows;
|
|
}
|
|
|
|
if( b.step.p == a.step.buf )
|
|
{
|
|
b.step.p = b.step.buf;
|
|
b.size.p = &b.rows;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void setSize( Mat& m, int _dims, const int* _sz,
|
|
const size_t* _steps, bool autoSteps=false )
|
|
{
|
|
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
|
|
if( m.dims != _dims )
|
|
{
|
|
if( m.step.p != m.step.buf )
|
|
{
|
|
fastFree(m.step.p);
|
|
m.step.p = m.step.buf;
|
|
m.size.p = &m.rows;
|
|
}
|
|
if( _dims > 2 )
|
|
{
|
|
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
|
|
m.size.p = (int*)(m.step.p + _dims) + 1;
|
|
m.size.p[-1] = _dims;
|
|
}
|
|
}
|
|
|
|
m.dims = _dims;
|
|
if( !_sz )
|
|
return;
|
|
|
|
size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
|
|
int i;
|
|
for( i = _dims-1; i >= 0; i-- )
|
|
{
|
|
int s = _sz[i];
|
|
CV_Assert( s >= 0 );
|
|
m.size.p[i] = s;
|
|
|
|
if( _steps )
|
|
m.step.p[i] = i < _dims-1 ? _steps[i] : esz;
|
|
else if( autoSteps )
|
|
{
|
|
m.step.p[i] = total;
|
|
int64 total1 = (int64)total*s;
|
|
if( (uint64)total1 != (size_t)total1 )
|
|
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
|
total = (size_t)total1;
|
|
}
|
|
}
|
|
|
|
if( _dims == 1 )
|
|
{
|
|
m.dims = 2;
|
|
m.cols = 1;
|
|
m.step[1] = esz;
|
|
}
|
|
}
|
|
|
|
static void updateContinuityFlag(Mat& m)
|
|
{
|
|
int i, j;
|
|
for( i = 0; i < m.dims; i++ )
|
|
{
|
|
if( m.size[i] > 1 )
|
|
break;
|
|
}
|
|
|
|
for( j = m.dims-1; j > i; j-- )
|
|
{
|
|
if( m.step[j]*m.size[j] < m.step[j-1] )
|
|
break;
|
|
}
|
|
|
|
int64 t = (int64)(m.step[0]/CV_ELEM_SIZE(m.flags))*m.size[0];
|
|
if( j <= i && t == (int)t )
|
|
m.flags |= Mat::CONTINUOUS_FLAG;
|
|
else
|
|
m.flags &= ~Mat::CONTINUOUS_FLAG;
|
|
}
|
|
|
|
static void finalizeHdr(Mat& m)
|
|
{
|
|
updateContinuityFlag(m);
|
|
int d = m.dims;
|
|
if( d > 2 )
|
|
m.rows = m.cols = -1;
|
|
if( m.data )
|
|
{
|
|
m.datalimit = m.datastart + m.size[0]*m.step[0];
|
|
if( m.size[0] > 0 )
|
|
{
|
|
m.dataend = m.data + m.size[d-1]*m.step[d-1];
|
|
for( int i = 0; i < d-1; i++ )
|
|
m.dataend += (m.size[i] - 1)*m.step[i];
|
|
}
|
|
else
|
|
m.dataend = m.datalimit;
|
|
}
|
|
else
|
|
m.dataend = m.datalimit = 0;
|
|
}
|
|
|
|
|
|
void Mat::create(int d, const int* _sizes, int _type)
|
|
{
|
|
int i;
|
|
CV_Assert(0 <= d && _sizes && d <= CV_MAX_DIM && _sizes);
|
|
_type = CV_MAT_TYPE(_type);
|
|
|
|
if( data && (d == dims || (d == 1 && dims <= 2)) && _type == type() )
|
|
{
|
|
if( d == 2 && rows == _sizes[0] && cols == _sizes[1] )
|
|
return;
|
|
for( i = 0; i < d; i++ )
|
|
if( size[i] != _sizes[i] )
|
|
break;
|
|
if( i == d && (d > 1 || size[1] == 1))
|
|
return;
|
|
}
|
|
|
|
release();
|
|
if( d == 0 )
|
|
return;
|
|
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
|
|
setSize(*this, d, _sizes, 0, allocator == 0);
|
|
|
|
if( size.p[0] > 0 )
|
|
{
|
|
if( !allocator )
|
|
{
|
|
size_t total = alignSize(step.p[0]*size.p[0], (int)sizeof(*refcount));
|
|
data = datastart = (uchar*)fastMalloc(total + (int)sizeof(*refcount));
|
|
refcount = (int*)(data + total);
|
|
*refcount = 1;
|
|
}
|
|
else
|
|
{
|
|
allocator->allocate(dims, size, _type, refcount, datastart, data, step.p);
|
|
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
|
|
}
|
|
}
|
|
|
|
finalizeHdr(*this);
|
|
}
|
|
|
|
void Mat::copySize(const Mat& m)
|
|
{
|
|
setSize(*this, m.dims, 0, 0);
|
|
for( int i = 0; i < dims; i++ )
|
|
{
|
|
size[i] = m.size[i];
|
|
step[i] = m.step[i];
|
|
}
|
|
}
|
|
|
|
void Mat::deallocate()
|
|
{
|
|
if( allocator )
|
|
allocator->deallocate(refcount, datastart, data);
|
|
else
|
|
{
|
|
CV_DbgAssert(refcount != 0);
|
|
fastFree(datastart);
|
|
}
|
|
}
|
|
|
|
|
|
Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
|
|
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
|
|
datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
|
{
|
|
CV_Assert( m.dims >= 2 );
|
|
if( m.dims > 2 )
|
|
{
|
|
AutoBuffer<Range> rs(m.dims);
|
|
rs[0] = rowRange;
|
|
rs[1] = colRange;
|
|
for( int i = 2; i < m.dims; i++ )
|
|
rs[i] = Range::all();
|
|
*this = m(rs);
|
|
return;
|
|
}
|
|
|
|
*this = m;
|
|
if( rowRange != Range::all() && rowRange != Range(0,rows) )
|
|
{
|
|
CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows );
|
|
rows = rowRange.size();
|
|
data += step*rowRange.start;
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
|
|
if( colRange != Range::all() && colRange != Range(0,cols) )
|
|
{
|
|
CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols );
|
|
cols = colRange.size();
|
|
data += colRange.start*elemSize();
|
|
flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
|
|
if( rows == 1 )
|
|
flags |= CONTINUOUS_FLAG;
|
|
|
|
if( rows <= 0 || cols <= 0 )
|
|
{
|
|
release();
|
|
rows = cols = 0;
|
|
}
|
|
}
|
|
|
|
|
|
Mat::Mat(const Mat& m, const Rect& roi)
|
|
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
|
|
data(m.data + roi.y*m.step[0]), refcount(m.refcount),
|
|
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit),
|
|
allocator(m.allocator), size(&rows)
|
|
{
|
|
CV_Assert( m.dims <= 2 );
|
|
flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0;
|
|
|
|
size_t esz = CV_ELEM_SIZE(flags);
|
|
data += roi.x*esz;
|
|
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
|
|
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
|
|
if( refcount )
|
|
CV_XADD(refcount, 1);
|
|
if( roi.width < m.cols || roi.height < m.rows )
|
|
flags |= SUBMATRIX_FLAG;
|
|
|
|
step[0] = m.step[0]; step[1] = esz;
|
|
|
|
if( rows <= 0 || cols <= 0 )
|
|
{
|
|
release();
|
|
rows = cols = 0;
|
|
}
|
|
}
|
|
|
|
|
|
Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps)
|
|
: flags(MAGIC_VAL|CV_MAT_TYPE(_type)), dims(0),
|
|
rows(0), cols(0), data((uchar*)_data), refcount(0),
|
|
datastart((uchar*)_data), dataend((uchar*)_data), datalimit((uchar*)_data),
|
|
allocator(0), size(&rows)
|
|
{
|
|
setSize(*this, _dims, _sizes, _steps, true);
|
|
finalizeHdr(*this);
|
|
}
|
|
|
|
|
|
Mat::Mat(const Mat& m, const Range* ranges)
|
|
: flags(m.flags), dims(0), rows(0), cols(0), data(0), refcount(0),
|
|
datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
|
{
|
|
int i, d = m.dims;
|
|
|
|
CV_Assert(ranges);
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
Range r = ranges[i];
|
|
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
|
|
}
|
|
*this = m;
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
Range r = ranges[i];
|
|
if( r != Range::all() && r != Range(0, size.p[i]))
|
|
{
|
|
size.p[i] = r.end - r.start;
|
|
data += r.start*step.p[i];
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
}
|
|
updateContinuityFlag(*this);
|
|
}
|
|
|
|
|
|
Mat::Mat(const CvMatND* m, bool copyData)
|
|
: flags(MAGIC_VAL|CV_MAT_TYPE(m->type)), dims(0), rows(0), cols(0),
|
|
data((uchar*)m->data.ptr), refcount(0),
|
|
datastart((uchar*)m->data.ptr), allocator(0),
|
|
size(&rows)
|
|
{
|
|
int _sizes[CV_MAX_DIM];
|
|
size_t _steps[CV_MAX_DIM];
|
|
|
|
int i, d = m->dims;
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
_sizes[i] = m->dim[i].size;
|
|
_steps[i] = m->dim[i].step;
|
|
}
|
|
|
|
setSize(*this, d, _sizes, _steps);
|
|
finalizeHdr(*this);
|
|
|
|
if( copyData )
|
|
{
|
|
Mat temp(*this);
|
|
temp.copyTo(*this);
|
|
}
|
|
}
|
|
|
|
|
|
Mat Mat::diag(int d) const
|
|
{
|
|
CV_Assert( dims <= 2 );
|
|
Mat m = *this;
|
|
size_t esz = elemSize();
|
|
int len;
|
|
|
|
if( d >= 0 )
|
|
{
|
|
len = std::min(cols - d, rows);
|
|
m.data += esz*d;
|
|
}
|
|
else
|
|
{
|
|
len = std::min(rows + d, cols);
|
|
m.data -= step[0]*d;
|
|
}
|
|
CV_DbgAssert( len > 0 );
|
|
|
|
m.size[0] = m.rows = len;
|
|
m.size[1] = m.cols = 1;
|
|
m.step[0] += (len > 1 ? esz : 0);
|
|
|
|
if( m.rows > 1 )
|
|
m.flags &= ~CONTINUOUS_FLAG;
|
|
else
|
|
m.flags |= CONTINUOUS_FLAG;
|
|
|
|
if( size() != Size(1,1) )
|
|
m.flags |= SUBMATRIX_FLAG;
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
Mat::Mat(const IplImage* img, bool copyData)
|
|
: flags(MAGIC_VAL), dims(2), rows(0), cols(0),
|
|
data(0), refcount(0), datastart(0), dataend(0), allocator(0), size(&rows)
|
|
{
|
|
CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0);
|
|
|
|
int depth = IPL2CV_DEPTH(img->depth);
|
|
size_t esz;
|
|
step[0] = img->widthStep;
|
|
|
|
if(!img->roi)
|
|
{
|
|
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL);
|
|
flags = MAGIC_VAL + CV_MAKETYPE(depth, img->nChannels);
|
|
rows = img->height; cols = img->width;
|
|
datastart = data = (uchar*)img->imageData;
|
|
esz = CV_ELEM_SIZE(flags);
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0);
|
|
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE;
|
|
flags = MAGIC_VAL + CV_MAKETYPE(depth, selectedPlane ? 1 : img->nChannels);
|
|
rows = img->roi->height; cols = img->roi->width;
|
|
esz = CV_ELEM_SIZE(flags);
|
|
data = datastart = (uchar*)img->imageData +
|
|
(selectedPlane ? (img->roi->coi - 1)*step*img->height : 0) +
|
|
img->roi->yOffset*step[0] + img->roi->xOffset*esz;
|
|
}
|
|
datalimit = datastart + step.p[0]*rows;
|
|
dataend = datastart + step.p[0]*(rows-1) + esz*cols;
|
|
flags |= (cols*esz == step.p[0] || rows == 1 ? CONTINUOUS_FLAG : 0);
|
|
step[1] = esz;
|
|
|
|
if( copyData )
|
|
{
|
|
Mat m = *this;
|
|
release();
|
|
if( !img->roi || !img->roi->coi ||
|
|
img->dataOrder == IPL_DATA_ORDER_PLANE)
|
|
m.copyTo(*this);
|
|
else
|
|
{
|
|
int ch[] = {img->roi->coi - 1, 0};
|
|
create(m.rows, m.cols, m.type());
|
|
mixChannels(&m, 1, this, 1, ch, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Mat::operator IplImage() const
|
|
{
|
|
CV_Assert( dims <= 2 );
|
|
IplImage img;
|
|
cvInitImageHeader(&img, size(), cvIplDepth(flags), channels());
|
|
cvSetData(&img, data, (int)step[0]);
|
|
return img;
|
|
}
|
|
|
|
|
|
void Mat::pop_back(size_t nelems)
|
|
{
|
|
CV_Assert( nelems <= (size_t)size.p[0] );
|
|
|
|
if( isSubmatrix() )
|
|
*this = rowRange(0, size.p[0] - (int)nelems);
|
|
else
|
|
{
|
|
size.p[0] -= (int)nelems;
|
|
dataend -= nelems*step.p[0];
|
|
/*if( size.p[0] <= 1 )
|
|
{
|
|
if( dims <= 2 )
|
|
flags |= CONTINUOUS_FLAG;
|
|
else
|
|
updateContinuityFlag(*this);
|
|
}*/
|
|
}
|
|
}
|
|
|
|
|
|
void Mat::push_back_(const void* elem)
|
|
{
|
|
int r = size.p[0];
|
|
if( isSubmatrix() || dataend + step.p[0] > datalimit )
|
|
reserve( std::max(r + 1, (r*3+1)/2) );
|
|
|
|
size_t esz = elemSize();
|
|
memcpy(data + r*step.p[0], elem, esz);
|
|
size.p[0] = r + 1;
|
|
dataend += step.p[0];
|
|
if( esz < step.p[0] )
|
|
flags &= ~CONTINUOUS_FLAG;
|
|
}
|
|
|
|
void Mat::reserve(size_t nelems)
|
|
{
|
|
const size_t MIN_SIZE = 64;
|
|
|
|
CV_Assert( (int)nelems >= 0 );
|
|
if( !isSubmatrix() && data + step.p[0]*nelems <= datalimit )
|
|
return;
|
|
|
|
int r = size.p[0];
|
|
|
|
if( (size_t)r >= nelems )
|
|
return;
|
|
|
|
size.p[0] = std::max((int)nelems, 1);
|
|
size_t newsize = total()*elemSize();
|
|
|
|
if( newsize < MIN_SIZE )
|
|
size.p[0] = (int)((MIN_SIZE + newsize - 1)*nelems/newsize);
|
|
|
|
Mat m(dims, size.p, type());
|
|
size.p[0] = r;
|
|
if( r > 0 )
|
|
{
|
|
Mat mpart = m.rowRange(0, r);
|
|
copyTo(mpart);
|
|
}
|
|
|
|
*this = m;
|
|
size.p[0] = r;
|
|
dataend = data + step.p[0]*r;
|
|
}
|
|
|
|
|
|
void Mat::resize(size_t nelems)
|
|
{
|
|
int saveRows = size.p[0];
|
|
if( saveRows == (int)nelems )
|
|
return;
|
|
CV_Assert( (int)nelems >= 0 );
|
|
|
|
if( isSubmatrix() || data + step.p[0]*nelems > datalimit )
|
|
reserve(nelems);
|
|
|
|
size.p[0] = (int)nelems;
|
|
dataend += (size.p[0] - saveRows)*step.p[0];
|
|
|
|
//updateContinuityFlag(*this);
|
|
}
|
|
|
|
|
|
void Mat::resize(size_t nelems, const Scalar& s)
|
|
{
|
|
int saveRows = size.p[0];
|
|
resize(nelems);
|
|
|
|
if( size.p[0] > saveRows )
|
|
{
|
|
Mat part = rowRange(saveRows, size.p[0]);
|
|
part = s;
|
|
}
|
|
}
|
|
|
|
void Mat::push_back(const Mat& elems)
|
|
{
|
|
int r = size.p[0], delta = elems.size.p[0];
|
|
if( delta == 0 )
|
|
return;
|
|
if( this != &elems )
|
|
{
|
|
size.p[0] = elems.size.p[0];
|
|
bool eq = size == elems.size;
|
|
size.p[0] = r;
|
|
if( !eq )
|
|
CV_Error(CV_StsUnmatchedSizes, "");
|
|
if( type() != elems.type() )
|
|
CV_Error(CV_StsUnmatchedFormats, "");
|
|
}
|
|
|
|
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit )
|
|
reserve( std::max(r + delta, (r*3+1)/2) );
|
|
|
|
size.p[0] += delta;
|
|
dataend += step.p[0]*delta;
|
|
|
|
//updateContinuityFlag(*this);
|
|
|
|
if( isContinuous() && elems.isContinuous() )
|
|
memcpy(data + r*step.p[0], elems.data, elems.total()*elems.elemSize());
|
|
else
|
|
{
|
|
Mat part = rowRange(r, r + delta);
|
|
elems.copyTo(part);
|
|
}
|
|
}
|
|
|
|
|
|
Mat cvarrToMat(const CvArr* arr, bool copyData,
|
|
bool /*allowND*/, int coiMode)
|
|
{
|
|
if( !arr )
|
|
return Mat();
|
|
if( CV_IS_MAT(arr) )
|
|
return Mat((const CvMat*)arr, copyData );
|
|
if( CV_IS_MATND(arr) )
|
|
return Mat((const CvMatND*)arr, copyData );
|
|
if( CV_IS_IMAGE(arr) )
|
|
{
|
|
const IplImage* iplimg = (const IplImage*)arr;
|
|
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 )
|
|
CV_Error(CV_BadCOI, "COI is not supported by the function");
|
|
return Mat(iplimg, copyData);
|
|
}
|
|
if( CV_IS_SEQ(arr) )
|
|
{
|
|
CvSeq* seq = (CvSeq*)arr;
|
|
CV_Assert(seq->total > 0 && CV_ELEM_SIZE(seq->flags) == seq->elem_size);
|
|
if(!copyData && seq->first->next == seq->first)
|
|
return Mat(seq->total, 1, CV_MAT_TYPE(seq->flags), seq->first->data);
|
|
Mat buf(seq->total, 1, CV_MAT_TYPE(seq->flags));
|
|
cvCvtSeqToArray(seq, buf.data, CV_WHOLE_SEQ);
|
|
return buf;
|
|
}
|
|
CV_Error(CV_StsBadArg, "Unknown array type");
|
|
return Mat();
|
|
}
|
|
|
|
void Mat::locateROI( Size& wholeSize, Point& ofs ) const
|
|
{
|
|
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
size_t esz = elemSize(), minstep;
|
|
ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart;
|
|
|
|
if( delta1 == 0 )
|
|
ofs.x = ofs.y = 0;
|
|
else
|
|
{
|
|
ofs.y = (int)(delta1/step[0]);
|
|
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
|
|
CV_DbgAssert( data == datastart + ofs.y*step[0] + ofs.x*esz );
|
|
}
|
|
minstep = (ofs.x + cols)*esz;
|
|
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
|
|
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
|
|
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
|
|
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
|
|
}
|
|
|
|
Mat& Mat::adjustROI( int dtop, int dbottom, int dleft, int dright )
|
|
{
|
|
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
Size wholeSize; Point ofs;
|
|
size_t esz = elemSize();
|
|
locateROI( wholeSize, ofs );
|
|
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
|
|
rows = row2 - row1; cols = col2 - col1;
|
|
size.p[0] = rows; size.p[1] = cols;
|
|
if( esz*cols == step[0] || rows == 1 )
|
|
flags |= CONTINUOUS_FLAG;
|
|
else
|
|
flags &= ~CONTINUOUS_FLAG;
|
|
return *this;
|
|
}
|
|
|
|
void extractImageCOI(const CvArr* arr, Mat& ch, int coi)
|
|
{
|
|
Mat mat = cvarrToMat(arr, false, true, 1);
|
|
ch.create(mat.dims, mat.size, mat.depth());
|
|
if(coi < 0)
|
|
CV_Assert( CV_IS_IMAGE(arr) && (coi = cvGetImageCOI((const IplImage*)arr)-1) >= 0 );
|
|
CV_Assert(0 <= coi && coi < mat.channels());
|
|
int _pairs[] = { coi, 0 };
|
|
mixChannels( &mat, 1, &ch, 1, _pairs, 1 );
|
|
}
|
|
|
|
void insertImageCOI(const Mat& ch, CvArr* arr, int coi)
|
|
{
|
|
Mat mat = cvarrToMat(arr, false, true, 1);
|
|
if(coi < 0)
|
|
CV_Assert( CV_IS_IMAGE(arr) && (coi = cvGetImageCOI((const IplImage*)arr)-1) >= 0 );
|
|
CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels());
|
|
int _pairs[] = { 0, coi };
|
|
mixChannels( &ch, 1, &mat, 1, _pairs, 1 );
|
|
}
|
|
|
|
|
|
Mat Mat::reshape(int new_cn, int new_rows) const
|
|
{
|
|
CV_Assert( dims <= 2 );
|
|
Mat hdr = *this;
|
|
|
|
int cn = channels();
|
|
if( new_cn == 0 )
|
|
new_cn = cn;
|
|
|
|
int total_width = cols * cn;
|
|
|
|
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
if( new_rows != 0 && new_rows != rows )
|
|
{
|
|
int total_size = total_width * rows;
|
|
if( !isContinuous() )
|
|
CV_Error( CV_BadStep,
|
|
"The matrix is not continuous, thus its number of rows can not be changed" );
|
|
|
|
if( (unsigned)new_rows > (unsigned)total_size )
|
|
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
if( total_width * new_rows != total_size )
|
|
CV_Error( CV_StsBadArg, "The total number of matrix elements "
|
|
"is not divisible by the new number of rows" );
|
|
|
|
hdr.rows = new_rows;
|
|
hdr.step[0] = total_width * elemSize1();
|
|
}
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
if( new_width * new_cn != total_width )
|
|
CV_Error( CV_BadNumChannels,
|
|
"The total width is not divisible by the new number of channels" );
|
|
|
|
hdr.cols = new_width;
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
hdr.step[1] = CV_ELEM_SIZE(hdr.flags);
|
|
return hdr;
|
|
}
|
|
|
|
|
|
int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
|
|
{
|
|
return (depth() == _depth || _depth <= 0) &&
|
|
(isContinuous() || !_requireContinuous) &&
|
|
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || (cols == _elemChannels))) ||
|
|
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
|
|
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
|
|
? (int)(total()*channels()/_elemChannels) : -1;
|
|
}
|
|
|
|
/*************************************************************************************************\
|
|
Matrix Operations
|
|
\*************************************************************************************************/
|
|
|
|
//////////////////////////////////////// set identity ////////////////////////////////////////////
|
|
void setIdentity( Mat& m, const Scalar& s )
|
|
{
|
|
CV_Assert( m.dims <= 2 );
|
|
int i, j, rows = m.rows, cols = m.cols, type = m.type();
|
|
|
|
if( type == CV_32FC1 )
|
|
{
|
|
float* data = (float*)m.data;
|
|
float val = (float)s[0];
|
|
size_t step = m.step/sizeof(data[0]);
|
|
|
|
for( i = 0; i < rows; i++, data += step )
|
|
{
|
|
for( j = 0; j < cols; j++ )
|
|
data[j] = 0;
|
|
if( i < cols )
|
|
data[i] = val;
|
|
}
|
|
}
|
|
else if( type == CV_64FC1 )
|
|
{
|
|
double* data = (double*)m.data;
|
|
double val = s[0];
|
|
size_t step = m.step/sizeof(data[0]);
|
|
|
|
for( i = 0; i < rows; i++, data += step )
|
|
{
|
|
for( j = 0; j < cols; j++ )
|
|
data[j] = j == i ? val : 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m = Scalar(0);
|
|
m.diag() = s;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////// trace ///////////////////////////////////////////
|
|
|
|
Scalar trace( const Mat& m )
|
|
{
|
|
CV_Assert( m.dims <= 2 );
|
|
int i, type = m.type();
|
|
int nm = std::min(m.rows, m.cols);
|
|
|
|
if( type == CV_32FC1 )
|
|
{
|
|
const float* ptr = (const float*)m.data;
|
|
size_t step = m.step/sizeof(ptr[0]) + 1;
|
|
double _s = 0;
|
|
for( i = 0; i < nm; i++ )
|
|
_s += ptr[i*step];
|
|
return _s;
|
|
}
|
|
|
|
if( type == CV_64FC1 )
|
|
{
|
|
const double* ptr = (const double*)m.data;
|
|
size_t step = m.step/sizeof(ptr[0]) + 1;
|
|
double _s = 0;
|
|
for( i = 0; i < nm; i++ )
|
|
_s += ptr[i*step];
|
|
return _s;
|
|
}
|
|
|
|
return cv::sum(m.diag());
|
|
}
|
|
|
|
////////////////////////////////////// transpose /////////////////////////////////////////
|
|
|
|
template<typename T> static void
|
|
transposeI_( Mat& mat )
|
|
{
|
|
int rows = mat.rows, cols = mat.cols;
|
|
uchar* data = mat.data;
|
|
size_t step = mat.step;
|
|
|
|
for( int i = 0; i < rows; i++ )
|
|
{
|
|
T* row = (T*)(data + step*i);
|
|
uchar* data1 = data + i*sizeof(T);
|
|
for( int j = i+1; j < cols; j++ )
|
|
std::swap( row[j], *(T*)(data1 + step*j) );
|
|
}
|
|
}
|
|
|
|
template<typename T> static void
|
|
transpose_( const Mat& src, Mat& dst )
|
|
{
|
|
int rows = dst.rows, cols = dst.cols;
|
|
uchar* data = src.data;
|
|
size_t step = src.step;
|
|
|
|
for( int i = 0; i < rows; i++ )
|
|
{
|
|
T* row = (T*)(dst.data + dst.step*i);
|
|
uchar* data1 = data + i*sizeof(T);
|
|
for( int j = 0; j < cols; j++ )
|
|
row[j] = *(T*)(data1 + step*j);
|
|
}
|
|
}
|
|
|
|
typedef void (*TransposeInplaceFunc)( Mat& mat );
|
|
typedef void (*TransposeFunc)( const Mat& src, Mat& dst );
|
|
|
|
void transpose( const Mat& src, Mat& dst )
|
|
{
|
|
TransposeInplaceFunc itab[] =
|
|
{
|
|
0,
|
|
transposeI_<uchar>, // 1
|
|
transposeI_<ushort>, // 2
|
|
transposeI_<Vec<uchar,3> >, // 3
|
|
transposeI_<int>, // 4
|
|
0,
|
|
transposeI_<Vec<ushort,3> >, // 6
|
|
0,
|
|
transposeI_<Vec<int,2> >, // 8
|
|
0, 0, 0,
|
|
transposeI_<Vec<int,3> >, // 12
|
|
0, 0, 0,
|
|
transposeI_<Vec<int,4> >, // 16
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
transposeI_<Vec<int,6> >, // 24
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
transposeI_<Vec<int,8> > // 32
|
|
};
|
|
|
|
TransposeFunc tab[] =
|
|
{
|
|
0,
|
|
transpose_<uchar>, // 1
|
|
transpose_<ushort>, // 2
|
|
transpose_<Vec<uchar,3> >, // 3
|
|
transpose_<int>, // 4
|
|
0,
|
|
transpose_<Vec<ushort,3> >, // 6
|
|
0,
|
|
transpose_<Vec<int,2> >, // 8
|
|
0, 0, 0,
|
|
transpose_<Vec<int,3> >, // 12
|
|
0, 0, 0,
|
|
transpose_<Vec<int,4> >, // 16
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
transpose_<Vec<int,6> >, // 24
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
transpose_<Vec<int,8> > // 32
|
|
};
|
|
|
|
size_t esz = src.elemSize();
|
|
CV_Assert( src.dims <= 2 && esz <= (size_t)32 );
|
|
|
|
if( dst.data == src.data && dst.cols == dst.rows )
|
|
{
|
|
TransposeInplaceFunc func = itab[esz];
|
|
CV_Assert( func != 0 );
|
|
func( dst );
|
|
}
|
|
else
|
|
{
|
|
dst.create( src.cols, src.rows, src.type() );
|
|
TransposeFunc func = tab[esz];
|
|
CV_Assert( func != 0 );
|
|
func( src, dst );
|
|
}
|
|
}
|
|
|
|
|
|
void completeSymm( Mat& m, bool LtoR )
|
|
{
|
|
CV_Assert( m.dims <= 2 );
|
|
|
|
int i, j, nrows = m.rows, type = m.type();
|
|
int j0 = 0, j1 = nrows;
|
|
CV_Assert( m.rows == m.cols );
|
|
|
|
if( type == CV_32FC1 || type == CV_32SC1 )
|
|
{
|
|
int* data = (int*)m.data;
|
|
size_t step = m.step/sizeof(data[0]);
|
|
for( i = 0; i < nrows; i++ )
|
|
{
|
|
if( !LtoR ) j1 = i; else j0 = i+1;
|
|
for( j = j0; j < j1; j++ )
|
|
data[i*step + j] = data[j*step + i];
|
|
}
|
|
}
|
|
else if( type == CV_64FC1 )
|
|
{
|
|
double* data = (double*)m.data;
|
|
size_t step = m.step/sizeof(data[0]);
|
|
for( i = 0; i < nrows; i++ )
|
|
{
|
|
if( !LtoR ) j1 = i; else j0 = i+1;
|
|
for( j = j0; j < j1; j++ )
|
|
data[i*step + j] = data[j*step + i];
|
|
}
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
}
|
|
|
|
|
|
Mat Mat::cross(const Mat& m) const
|
|
{
|
|
int t = type(), d = CV_MAT_DEPTH(t);
|
|
CV_Assert( dims <= 2 && m.dims <= 2 && size() == m.size() && t == m.type() &&
|
|
((rows == 3 && cols == 1) || (cols*channels() == 3 && rows == 1)));
|
|
Mat result(rows, cols, t);
|
|
|
|
if( d == CV_32F )
|
|
{
|
|
const float *a = (const float*)data, *b = (const float*)m.data;
|
|
float* c = (float*)result.data;
|
|
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1;
|
|
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1;
|
|
|
|
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb];
|
|
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2];
|
|
c[2] = a[0] * b[ldb] - a[lda] * b[0];
|
|
}
|
|
else if( d == CV_64F )
|
|
{
|
|
const double *a = (const double*)data, *b = (const double*)m.data;
|
|
double* c = (double*)result.data;
|
|
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1;
|
|
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1;
|
|
|
|
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb];
|
|
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2];
|
|
c[2] = a[0] * b[ldb] - a[lda] * b[0];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////// reduce ////////////////////////////////////////////
|
|
|
|
template<typename T, typename ST, class Op> static void
|
|
reduceR_( const Mat& srcmat, Mat& dstmat )
|
|
{
|
|
typedef typename Op::rtype WT;
|
|
Size size = srcmat.size();
|
|
size.width *= srcmat.channels();
|
|
AutoBuffer<WT> buffer(size.width);
|
|
WT* buf = buffer;
|
|
ST* dst = (ST*)dstmat.data;
|
|
const T* src = (const T*)srcmat.data;
|
|
size_t srcstep = srcmat.step/sizeof(src[0]);
|
|
int i;
|
|
Op op;
|
|
|
|
for( i = 0; i < size.width; i++ )
|
|
buf[i] = src[i];
|
|
|
|
for( ; --size.height; )
|
|
{
|
|
src += srcstep;
|
|
for( i = 0; i <= size.width - 4; i += 4 )
|
|
{
|
|
WT s0, s1;
|
|
s0 = op(buf[i], (WT)src[i]);
|
|
s1 = op(buf[i+1], (WT)src[i+1]);
|
|
buf[i] = s0; buf[i+1] = s1;
|
|
|
|
s0 = op(buf[i+2], (WT)src[i+2]);
|
|
s1 = op(buf[i+3], (WT)src[i+3]);
|
|
buf[i+2] = s0; buf[i+3] = s1;
|
|
}
|
|
|
|
for( ; i < size.width; i++ )
|
|
buf[i] = op(buf[i], (WT)src[i]);
|
|
}
|
|
|
|
for( i = 0; i < size.width; i++ )
|
|
dst[i] = (ST)buf[i];
|
|
}
|
|
|
|
|
|
template<typename T, typename ST, class Op> static void
|
|
reduceC_( const Mat& srcmat, Mat& dstmat )
|
|
{
|
|
typedef typename Op::rtype WT;
|
|
Size size = srcmat.size();
|
|
int i, k, cn = srcmat.channels();
|
|
size.width *= cn;
|
|
Op op;
|
|
|
|
for( int y = 0; y < size.height; y++ )
|
|
{
|
|
const T* src = (const T*)(srcmat.data + srcmat.step*y);
|
|
ST* dst = (ST*)(dstmat.data + dstmat.step*y);
|
|
if( size.width == cn )
|
|
for( k = 0; k < cn; k++ )
|
|
dst[k] = src[k];
|
|
else
|
|
{
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
WT a0 = src[k], a1 = src[k+cn];
|
|
for( i = 2*cn; i <= size.width - 4*cn; i += 4*cn )
|
|
{
|
|
a0 = op(a0, (WT)src[i+k]);
|
|
a1 = op(a1, (WT)src[i+k+cn]);
|
|
a0 = op(a0, (WT)src[i+k+cn*2]);
|
|
a1 = op(a1, (WT)src[i+k+cn*3]);
|
|
}
|
|
|
|
for( ; i < size.width; i += cn )
|
|
{
|
|
a0 = op(a0, (WT)src[i]);
|
|
}
|
|
a0 = op(a0, a1);
|
|
dst[k] = (ST)a0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef void (*ReduceFunc)( const Mat& src, Mat& dst );
|
|
|
|
void reduce(const Mat& src, Mat& dst, int dim, int op, int dtype)
|
|
{
|
|
CV_Assert( src.dims <= 2 );
|
|
int op0 = op;
|
|
int stype = src.type(), sdepth = src.depth();
|
|
if( dtype < 0 )
|
|
dtype = stype;
|
|
int ddepth = CV_MAT_DEPTH(dtype);
|
|
|
|
dst.create(dim == 0 ? 1 : src.rows, dim == 0 ? src.cols : 1, dtype >= 0 ? dtype : stype);
|
|
Mat temp = dst;
|
|
|
|
CV_Assert( op == CV_REDUCE_SUM || op == CV_REDUCE_MAX ||
|
|
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG );
|
|
CV_Assert( src.channels() == dst.channels() );
|
|
|
|
if( op == CV_REDUCE_AVG )
|
|
{
|
|
op = CV_REDUCE_SUM;
|
|
if( sdepth < CV_32S && ddepth < CV_32S )
|
|
temp.create(dst.rows, dst.cols, CV_32SC(src.channels()));
|
|
}
|
|
|
|
ReduceFunc func = 0;
|
|
if( dim == 0 )
|
|
{
|
|
if( op == CV_REDUCE_SUM )
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_32S)
|
|
func = reduceR_<uchar,int,OpAdd<int> >;
|
|
if(sdepth == CV_8U && ddepth == CV_32F)
|
|
func = reduceR_<uchar,float,OpAdd<int> >;
|
|
if(sdepth == CV_8U && ddepth == CV_64F)
|
|
func = reduceR_<uchar,double,OpAdd<int> >;
|
|
if(sdepth == CV_16U && ddepth == CV_32F)
|
|
func = reduceR_<ushort,float,OpAdd<float> >;
|
|
if(sdepth == CV_16U && ddepth == CV_64F)
|
|
func = reduceR_<ushort,double,OpAdd<double> >;
|
|
if(sdepth == CV_16S && ddepth == CV_32F)
|
|
func = reduceR_<short,float,OpAdd<float> >;
|
|
if(sdepth == CV_16S && ddepth == CV_64F)
|
|
func = reduceR_<short,double,OpAdd<double> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceR_<float,float,OpAdd<float> >;
|
|
if(sdepth == CV_32F && ddepth == CV_64F)
|
|
func = reduceR_<float,double,OpAdd<double> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceR_<double,double,OpAdd<double> >;
|
|
}
|
|
else if(op == CV_REDUCE_MAX)
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
func = reduceR_<uchar, uchar, OpMax<uchar> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceR_<float, float, OpMax<float> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceR_<double, double, OpMax<double> >;
|
|
}
|
|
else if(op == CV_REDUCE_MIN)
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
func = reduceR_<uchar, uchar, OpMin<uchar> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceR_<float, float, OpMin<float> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceR_<double, double, OpMin<double> >;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(op == CV_REDUCE_SUM)
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_32S)
|
|
func = reduceC_<uchar,int,OpAdd<int> >;
|
|
if(sdepth == CV_8U && ddepth == CV_32F)
|
|
func = reduceC_<uchar,float,OpAdd<int> >;
|
|
if(sdepth == CV_8U && ddepth == CV_64F)
|
|
func = reduceC_<uchar,double,OpAdd<int> >;
|
|
if(sdepth == CV_16U && ddepth == CV_32F)
|
|
func = reduceC_<ushort,float,OpAdd<float> >;
|
|
if(sdepth == CV_16U && ddepth == CV_64F)
|
|
func = reduceC_<ushort,double,OpAdd<double> >;
|
|
if(sdepth == CV_16S && ddepth == CV_32F)
|
|
func = reduceC_<short,float,OpAdd<float> >;
|
|
if(sdepth == CV_16S && ddepth == CV_64F)
|
|
func = reduceC_<short,double,OpAdd<double> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceC_<float,float,OpAdd<float> >;
|
|
if(sdepth == CV_32F && ddepth == CV_64F)
|
|
func = reduceC_<float,double,OpAdd<double> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceC_<double,double,OpAdd<double> >;
|
|
}
|
|
else if(op == CV_REDUCE_MAX)
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
func = reduceC_<uchar, uchar, OpMax<uchar> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceC_<float, float, OpMax<float> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceC_<double, double, OpMax<double> >;
|
|
}
|
|
else if(op == CV_REDUCE_MIN)
|
|
{
|
|
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
func = reduceC_<uchar, uchar, OpMin<uchar> >;
|
|
if(sdepth == CV_32F && ddepth == CV_32F)
|
|
func = reduceC_<float, float, OpMin<float> >;
|
|
if(sdepth == CV_64F && ddepth == CV_64F)
|
|
func = reduceC_<double, double, OpMin<double> >;
|
|
}
|
|
}
|
|
|
|
if( !func )
|
|
CV_Error( CV_StsUnsupportedFormat,
|
|
"Unsupported combination of input and output array formats" );
|
|
|
|
func( src, temp );
|
|
|
|
if( op0 == CV_REDUCE_AVG )
|
|
temp.convertTo(dst, dst.type(), 1./(dim == 0 ? src.rows : src.cols));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////// sort ///////////////////////////////////////////
|
|
|
|
template<typename T> static void sort_( const Mat& src, Mat& dst, int flags )
|
|
{
|
|
AutoBuffer<T> buf;
|
|
T* bptr;
|
|
int i, j, n, len;
|
|
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW;
|
|
bool inplace = src.data == dst.data;
|
|
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0;
|
|
|
|
if( sortRows )
|
|
n = src.rows, len = src.cols;
|
|
else
|
|
{
|
|
n = src.cols, len = src.rows;
|
|
buf.allocate(len);
|
|
}
|
|
bptr = (T*)buf;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
T* ptr = bptr;
|
|
if( sortRows )
|
|
{
|
|
T* dptr = (T*)(dst.data + dst.step*i);
|
|
if( !inplace )
|
|
{
|
|
const T* sptr = (const T*)(src.data + src.step*i);
|
|
for( j = 0; j < len; j++ )
|
|
dptr[j] = sptr[j];
|
|
}
|
|
ptr = dptr;
|
|
}
|
|
else
|
|
{
|
|
for( j = 0; j < len; j++ )
|
|
ptr[j] = ((const T*)(src.data + src.step*j))[i];
|
|
}
|
|
std::sort( ptr, ptr + len, LessThan<T>() );
|
|
if( sortDescending )
|
|
for( j = 0; j < len/2; j++ )
|
|
std::swap(ptr[j], ptr[len-1-j]);
|
|
if( !sortRows )
|
|
for( j = 0; j < len; j++ )
|
|
((T*)(dst.data + dst.step*j))[i] = ptr[j];
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T> static void sortIdx_( const Mat& src, Mat& dst, int flags )
|
|
{
|
|
AutoBuffer<T> buf;
|
|
AutoBuffer<int> ibuf;
|
|
T* bptr;
|
|
int* _iptr;
|
|
int i, j, n, len;
|
|
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW;
|
|
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0;
|
|
|
|
CV_Assert( src.data != dst.data );
|
|
|
|
if( sortRows )
|
|
n = src.rows, len = src.cols;
|
|
else
|
|
{
|
|
n = src.cols, len = src.rows;
|
|
buf.allocate(len);
|
|
ibuf.allocate(len);
|
|
}
|
|
bptr = (T*)buf;
|
|
_iptr = (int*)ibuf;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
T* ptr = bptr;
|
|
int* iptr = _iptr;
|
|
|
|
if( sortRows )
|
|
{
|
|
ptr = (T*)(src.data + src.step*i);
|
|
iptr = (int*)(dst.data + dst.step*i);
|
|
}
|
|
else
|
|
{
|
|
for( j = 0; j < len; j++ )
|
|
ptr[j] = ((const T*)(src.data + src.step*j))[i];
|
|
}
|
|
for( j = 0; j < len; j++ )
|
|
iptr[j] = j;
|
|
std::sort( iptr, iptr + len, LessThanIdx<T>(ptr) );
|
|
if( sortDescending )
|
|
for( j = 0; j < len/2; j++ )
|
|
std::swap(iptr[j], iptr[len-1-j]);
|
|
if( !sortRows )
|
|
for( j = 0; j < len; j++ )
|
|
((int*)(dst.data + dst.step*j))[i] = iptr[j];
|
|
}
|
|
}
|
|
|
|
typedef void (*SortFunc)(const Mat& src, Mat& dst, int flags);
|
|
|
|
void sort( const Mat& src, Mat& dst, int flags )
|
|
{
|
|
static SortFunc tab[] =
|
|
{
|
|
sort_<uchar>, sort_<schar>, sort_<ushort>, sort_<short>,
|
|
sort_<int>, sort_<float>, sort_<double>, 0
|
|
};
|
|
SortFunc func = tab[src.depth()];
|
|
CV_Assert( src.dims <= 2 && src.channels() == 1 && func != 0 );
|
|
dst.create( src.size(), src.type() );
|
|
func( src, dst, flags );
|
|
}
|
|
|
|
void sortIdx( const Mat& src, Mat& dst, int flags )
|
|
{
|
|
static SortFunc tab[] =
|
|
{
|
|
sortIdx_<uchar>, sortIdx_<schar>, sortIdx_<ushort>, sortIdx_<short>,
|
|
sortIdx_<int>, sortIdx_<float>, sortIdx_<double>, 0
|
|
};
|
|
SortFunc func = tab[src.depth()];
|
|
CV_Assert( src.dims <= 2 && src.channels() == 1 && func != 0 );
|
|
if( dst.data == src.data )
|
|
dst.release();
|
|
dst.create( src.size(), CV_32S );
|
|
func( src, dst, flags );
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////// kmeans ////////////////////////////////////////////
|
|
|
|
static void generateRandomCenter(const vector<Vec2f>& box, float* center, RNG& rng)
|
|
{
|
|
size_t j, dims = box.size();
|
|
float margin = 1.f/dims;
|
|
for( j = 0; j < dims; j++ )
|
|
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
|
|
}
|
|
|
|
|
|
static inline float distance(const float* a, const float* b, int n, bool simd)
|
|
{
|
|
int j = 0; float d = 0.f;
|
|
#if CV_SSE
|
|
if( simd )
|
|
{
|
|
float CV_DECL_ALIGNED(16) buf[4];
|
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
|
|
|
|
for( ; j <= n - 8; j += 8 )
|
|
{
|
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
|
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
|
|
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0));
|
|
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1));
|
|
}
|
|
_mm_store_ps(buf, _mm_add_ps(d0, d1));
|
|
d = buf[0] + buf[1] + buf[2] + buf[3];
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for( ; j <= n - 4; j += 4 )
|
|
{
|
|
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3];
|
|
d += t0*t0 + t1*t1 + t2*t2 + t3*t3;
|
|
}
|
|
}
|
|
|
|
for( ; j < n; j++ )
|
|
{
|
|
float t = a[j] - b[j];
|
|
d += t*t;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
k-means center initialization using the following algorithm:
|
|
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
|
|
*/
|
|
static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
|
int K, RNG& rng, int trials)
|
|
{
|
|
int i, j, k, dims = _data.cols, N = _data.rows;
|
|
const float* data = _data.ptr<float>(0);
|
|
int step = (int)(_data.step/sizeof(data[0]));
|
|
vector<int> _centers(K);
|
|
int* centers = &_centers[0];
|
|
vector<float> _dist(N*3);
|
|
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
|
|
double sum0 = 0;
|
|
bool simd = checkHardwareSupport(CV_CPU_SSE);
|
|
|
|
centers[0] = (unsigned)rng % N;
|
|
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
dist[i] = distance(data + step*i, data + step*centers[0], dims, simd);
|
|
sum0 += dist[i];
|
|
}
|
|
|
|
for( k = 1; k < K; k++ )
|
|
{
|
|
double bestSum = DBL_MAX;
|
|
int bestCenter = -1;
|
|
|
|
for( j = 0; j < trials; j++ )
|
|
{
|
|
double p = (double)rng*sum0, s = 0;
|
|
for( i = 0; i < N-1; i++ )
|
|
if( (p -= dist[i]) <= 0 )
|
|
break;
|
|
int ci = i;
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
tdist2[i] = std::min(distance(data + step*i, data + step*ci, dims, simd), dist[i]);
|
|
s += tdist2[i];
|
|
}
|
|
|
|
if( s < bestSum )
|
|
{
|
|
bestSum = s;
|
|
bestCenter = ci;
|
|
std::swap(tdist, tdist2);
|
|
}
|
|
}
|
|
centers[k] = bestCenter;
|
|
sum0 = bestSum;
|
|
std::swap(dist, tdist);
|
|
}
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
const float* src = data + step*centers[k];
|
|
float* dst = _out_centers.ptr<float>(k);
|
|
for( j = 0; j < dims; j++ )
|
|
dst[j] = src[j];
|
|
}
|
|
}
|
|
|
|
double kmeans( const Mat& data, int K, Mat& best_labels,
|
|
TermCriteria criteria, int attempts,
|
|
int flags, Mat* _centers )
|
|
{
|
|
const int SPP_TRIALS = 3;
|
|
int N = data.rows > 1 ? data.rows : data.cols;
|
|
int dims = (data.rows > 1 ? data.cols : 1)*data.channels();
|
|
int type = data.depth();
|
|
bool simd = checkHardwareSupport(CV_CPU_SSE);
|
|
|
|
attempts = std::max(attempts, 1);
|
|
CV_Assert( data.dims <= 2 && type == CV_32F && K > 0 );
|
|
|
|
Mat _labels;
|
|
if( flags & CV_KMEANS_USE_INITIAL_LABELS )
|
|
{
|
|
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
|
|
best_labels.cols*best_labels.rows == N &&
|
|
best_labels.type() == CV_32S &&
|
|
best_labels.isContinuous());
|
|
best_labels.copyTo(_labels);
|
|
}
|
|
else
|
|
{
|
|
if( !((best_labels.cols == 1 || best_labels.rows == 1) &&
|
|
best_labels.cols*best_labels.rows == N &&
|
|
best_labels.type() == CV_32S &&
|
|
best_labels.isContinuous()))
|
|
best_labels.create(N, 1, CV_32S);
|
|
_labels.create(best_labels.size(), best_labels.type());
|
|
}
|
|
int* labels = _labels.ptr<int>();
|
|
|
|
Mat centers(K, dims, type), old_centers(K, dims, type);
|
|
vector<int> counters(K);
|
|
vector<Vec2f> _box(dims);
|
|
Vec2f* box = &_box[0];
|
|
|
|
double best_compactness = DBL_MAX, compactness = 0;
|
|
RNG& rng = theRNG();
|
|
int a, iter, i, j, k;
|
|
|
|
if( criteria.type & TermCriteria::EPS )
|
|
criteria.epsilon = std::max(criteria.epsilon, 0.);
|
|
else
|
|
criteria.epsilon = FLT_EPSILON;
|
|
criteria.epsilon *= criteria.epsilon;
|
|
|
|
if( criteria.type & TermCriteria::COUNT )
|
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
|
|
else
|
|
criteria.maxCount = 100;
|
|
|
|
if( K == 1 )
|
|
{
|
|
attempts = 1;
|
|
criteria.maxCount = 2;
|
|
}
|
|
|
|
const float* sample = data.ptr<float>(0);
|
|
for( j = 0; j < dims; j++ )
|
|
box[j] = Vec2f(sample[j], sample[j]);
|
|
|
|
for( i = 1; i < N; i++ )
|
|
{
|
|
sample = data.ptr<float>(i);
|
|
for( j = 0; j < dims; j++ )
|
|
{
|
|
float v = sample[j];
|
|
box[j][0] = std::min(box[j][0], v);
|
|
box[j][1] = std::max(box[j][1], v);
|
|
}
|
|
}
|
|
|
|
for( a = 0; a < attempts; a++ )
|
|
{
|
|
double max_center_shift = DBL_MAX;
|
|
for( iter = 0; iter < criteria.maxCount && max_center_shift > criteria.epsilon; iter++ )
|
|
{
|
|
swap(centers, old_centers);
|
|
|
|
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
|
|
{
|
|
if( flags & KMEANS_PP_CENTERS )
|
|
generateCentersPP(data, centers, K, rng, SPP_TRIALS);
|
|
else
|
|
{
|
|
for( k = 0; k < K; k++ )
|
|
generateRandomCenter(_box, centers.ptr<float>(k), rng);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
|
|
{
|
|
for( i = 0; i < N; i++ )
|
|
CV_Assert( (unsigned)labels[i] < (unsigned)K );
|
|
}
|
|
|
|
// compute centers
|
|
centers = Scalar(0);
|
|
for( k = 0; k < K; k++ )
|
|
counters[k] = 0;
|
|
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
sample = data.ptr<float>(i);
|
|
k = labels[i];
|
|
float* center = centers.ptr<float>(k);
|
|
for( j = 0; j <= dims - 4; j += 4 )
|
|
{
|
|
float t0 = center[j] + sample[j];
|
|
float t1 = center[j+1] + sample[j+1];
|
|
|
|
center[j] = t0;
|
|
center[j+1] = t1;
|
|
|
|
t0 = center[j+2] + sample[j+2];
|
|
t1 = center[j+3] + sample[j+3];
|
|
|
|
center[j+2] = t0;
|
|
center[j+3] = t1;
|
|
}
|
|
for( ; j < dims; j++ )
|
|
center[j] += sample[j];
|
|
counters[k]++;
|
|
}
|
|
|
|
if( iter > 0 )
|
|
max_center_shift = 0;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
float* center = centers.ptr<float>(k);
|
|
if( counters[k] != 0 )
|
|
{
|
|
float scale = 1.f/counters[k];
|
|
for( j = 0; j < dims; j++ )
|
|
center[j] *= scale;
|
|
}
|
|
else
|
|
generateRandomCenter(_box, center, rng);
|
|
|
|
if( iter > 0 )
|
|
{
|
|
double dist = 0;
|
|
const float* old_center = old_centers.ptr<float>(k);
|
|
for( j = 0; j < dims; j++ )
|
|
{
|
|
double t = center[j] - old_center[j];
|
|
dist += t*t;
|
|
}
|
|
max_center_shift = std::max(max_center_shift, dist);
|
|
}
|
|
}
|
|
}
|
|
|
|
// assign labels
|
|
compactness = 0;
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
sample = data.ptr<float>(i);
|
|
int k_best = 0;
|
|
double min_dist = DBL_MAX;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
const float* center = centers.ptr<float>(k);
|
|
double dist = distance(sample, center, dims, simd);
|
|
|
|
if( min_dist > dist )
|
|
{
|
|
min_dist = dist;
|
|
k_best = k;
|
|
}
|
|
}
|
|
|
|
compactness += min_dist;
|
|
labels[i] = k_best;
|
|
}
|
|
}
|
|
|
|
if( compactness < best_compactness )
|
|
{
|
|
best_compactness = compactness;
|
|
if( _centers )
|
|
centers.copyTo(*_centers);
|
|
_labels.copyTo(best_labels);
|
|
}
|
|
}
|
|
|
|
return best_compactness;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value )
|
|
{
|
|
cv::Mat m = cv::cvarrToMat(arr);
|
|
cv::setIdentity(m, value);
|
|
}
|
|
|
|
|
|
CV_IMPL CvScalar cvTrace( const CvArr* arr )
|
|
{
|
|
return cv::trace(cv::cvarrToMat(arr));
|
|
}
|
|
|
|
|
|
CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() );
|
|
transpose( src, dst );
|
|
}
|
|
|
|
|
|
CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR )
|
|
{
|
|
cv::Mat m(matrix);
|
|
cv::completeSymm( m, LtoR != 0 );
|
|
}
|
|
|
|
|
|
CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr )
|
|
{
|
|
cv::Mat srcA = cv::cvarrToMat(srcAarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() );
|
|
srcA.cross(cv::cvarrToMat(srcBarr)).copyTo(dst);
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
if( dim < 0 )
|
|
dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1;
|
|
|
|
if( dim > 1 )
|
|
CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" );
|
|
|
|
if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) ||
|
|
(dim == 1 && (dst.rows != src.rows || dst.cols != 1)) )
|
|
CV_Error( CV_StsBadSize, "The output array size is incorrect" );
|
|
|
|
if( src.channels() != dst.channels() )
|
|
CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" );
|
|
|
|
cv::reduce(src, dst, dim, op, dst.type());
|
|
}
|
|
|
|
|
|
CV_IMPL CvArr*
|
|
cvRange( CvArr* arr, double start, double end )
|
|
{
|
|
int ok = 0;
|
|
|
|
CvMat stub, *mat = (CvMat*)arr;
|
|
double delta;
|
|
int type, step;
|
|
double val = start;
|
|
int i, j;
|
|
int rows, cols;
|
|
|
|
if( !CV_IS_MAT(mat) )
|
|
mat = cvGetMat( mat, &stub);
|
|
|
|
rows = mat->rows;
|
|
cols = mat->cols;
|
|
type = CV_MAT_TYPE(mat->type);
|
|
delta = (end-start)/(rows*cols);
|
|
|
|
if( CV_IS_MAT_CONT(mat->type) )
|
|
{
|
|
cols *= rows;
|
|
rows = 1;
|
|
step = 1;
|
|
}
|
|
else
|
|
step = mat->step / CV_ELEM_SIZE(type);
|
|
|
|
if( type == CV_32SC1 )
|
|
{
|
|
int* idata = mat->data.i;
|
|
int ival = cvRound(val), idelta = cvRound(delta);
|
|
|
|
if( fabs(val - ival) < DBL_EPSILON &&
|
|
fabs(delta - idelta) < DBL_EPSILON )
|
|
{
|
|
for( i = 0; i < rows; i++, idata += step )
|
|
for( j = 0; j < cols; j++, ival += idelta )
|
|
idata[j] = ival;
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < rows; i++, idata += step )
|
|
for( j = 0; j < cols; j++, val += delta )
|
|
idata[j] = cvRound(val);
|
|
}
|
|
}
|
|
else if( type == CV_32FC1 )
|
|
{
|
|
float* fdata = mat->data.fl;
|
|
for( i = 0; i < rows; i++, fdata += step )
|
|
for( j = 0; j < cols; j++, val += delta )
|
|
fdata[j] = (float)val;
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" );
|
|
|
|
ok = 1;
|
|
return ok ? arr : 0;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(_src), dst, idx;
|
|
|
|
if( _idx )
|
|
{
|
|
cv::Mat idx0 = cv::cvarrToMat(_idx), idx = idx0;
|
|
CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data );
|
|
cv::sortIdx( src, idx, flags );
|
|
CV_Assert( idx0.data == idx.data );
|
|
}
|
|
|
|
if( _dst )
|
|
{
|
|
cv::Mat dst0 = cv::cvarrToMat(_dst), dst = dst0;
|
|
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
|
cv::sort( src, dst, flags );
|
|
CV_Assert( dst0.data == dst.data );
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels,
|
|
CvTermCriteria termcrit, int attempts, CvRNG*,
|
|
int flags, CvArr* _centers, double* _compactness )
|
|
{
|
|
cv::Mat data = cv::cvarrToMat(_samples), labels = cv::cvarrToMat(_labels), centers;
|
|
if( _centers )
|
|
centers = cv::cvarrToMat(_centers);
|
|
CV_Assert( labels.isContinuous() && labels.type() == CV_32S &&
|
|
(labels.cols == 1 || labels.rows == 1) &&
|
|
labels.cols + labels.rows - 1 == data.rows );
|
|
double compactness = cv::kmeans(data, cluster_count, labels, termcrit, attempts,
|
|
flags, _centers ? ¢ers : 0 );
|
|
if( _compactness )
|
|
*_compactness = compactness;
|
|
return 1;
|
|
}
|
|
|
|
///////////////////////////// n-dimensional matrices ////////////////////////////
|
|
|
|
namespace cv
|
|
{
|
|
|
|
Mat Mat::reshape(int, int, const int*) const
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "");
|
|
// TBD
|
|
return Mat();
|
|
}
|
|
|
|
Mat::operator CvMatND() const
|
|
{
|
|
CvMatND mat;
|
|
cvInitMatNDHeader( &mat, dims, size, type(), data );
|
|
int i, d = dims;
|
|
for( i = 0; i < d; i++ )
|
|
mat.dim[i].step = (int)step[i];
|
|
mat.type |= flags & CONTINUOUS_FLAG;
|
|
return mat;
|
|
}
|
|
|
|
NAryMatIterator::NAryMatIterator()
|
|
: arrays(0), planes(0), narrays(0), nplanes(0), iterdepth(0), idx(0)
|
|
{
|
|
}
|
|
|
|
NAryMatIterator::NAryMatIterator(const Mat** _arrays, Mat* _planes, int _narrays)
|
|
: arrays(0), planes(0), narrays(0), nplanes(0), iterdepth(0), idx(0)
|
|
{
|
|
init(_arrays, _planes, _narrays);
|
|
}
|
|
|
|
void NAryMatIterator::init(const Mat** _arrays, Mat* _planes, int _narrays)
|
|
{
|
|
CV_Assert( _arrays && _planes );
|
|
int i, j, d1=0, i0 = -1, d = -1, total = 0;
|
|
|
|
arrays = _arrays;
|
|
planes = _planes;
|
|
narrays = _narrays;
|
|
nplanes = 0;
|
|
|
|
if( narrays < 0 )
|
|
{
|
|
for( i = 0; _arrays[i] != 0; i++ )
|
|
;
|
|
narrays = i;
|
|
CV_Assert(narrays <= 1000);
|
|
}
|
|
|
|
iterdepth = 0;
|
|
|
|
for( i = 0; i < narrays; i++ )
|
|
{
|
|
CV_Assert(arrays[i] != 0);
|
|
if( !arrays[i]->data )
|
|
continue;
|
|
const Mat& A = *arrays[i];
|
|
|
|
if( i0 < 0 )
|
|
{
|
|
i0 = i;
|
|
d = A.dims;
|
|
|
|
// find the first dimensionality which is different from 1;
|
|
// in any of the arrays the first "d1" step do not affect the continuity
|
|
for( d1 = 0; d1 < d; d1++ )
|
|
if( A.size[d1] > 1 )
|
|
break;
|
|
}
|
|
else
|
|
CV_Assert( A.size == arrays[i0]->size );
|
|
|
|
if( !A.isContinuous() )
|
|
{
|
|
CV_Assert( A.step[d-1] == A.elemSize() );
|
|
for( j = d-1; j > d1; j-- )
|
|
if( A.step[j]*A.size[j] < A.step[j-1] )
|
|
break;
|
|
iterdepth = std::max(iterdepth, j);
|
|
}
|
|
}
|
|
|
|
if( i0 >= 0 )
|
|
{
|
|
total = arrays[i0]->size[d-1];
|
|
for( j = d-1; j > iterdepth; j-- )
|
|
{
|
|
int64 total1 = (int64)total*arrays[i0]->size[j-1];
|
|
if( total1 != (int)total1 )
|
|
break;
|
|
total = (int)total1;
|
|
}
|
|
|
|
iterdepth = j;
|
|
if( iterdepth == d1 )
|
|
iterdepth = 0;
|
|
|
|
nplanes = 1;
|
|
for( j = iterdepth-1; j >= 0; j-- )
|
|
nplanes *= arrays[i0]->size[j];
|
|
}
|
|
else
|
|
iterdepth = nplanes = 0;
|
|
|
|
for( i = 0; i < narrays; i++ )
|
|
{
|
|
if( !arrays[i]->data )
|
|
{
|
|
planes[i] = Mat();
|
|
continue;
|
|
}
|
|
planes[i] = Mat( 1, total, arrays[i]->type(), arrays[i]->data );
|
|
planes[i].datastart = arrays[i]->datastart;
|
|
planes[i].dataend = arrays[i]->dataend;
|
|
}
|
|
|
|
idx = 0;
|
|
}
|
|
|
|
|
|
NAryMatIterator& NAryMatIterator::operator ++()
|
|
{
|
|
if( idx >= nplanes-1 )
|
|
return *this;
|
|
++idx;
|
|
|
|
for( int i = 0; i < narrays; i++ )
|
|
{
|
|
const Mat& A = *arrays[i];
|
|
Mat& M = planes[i];
|
|
if( !A.data )
|
|
continue;
|
|
int _idx = idx;
|
|
uchar* data = A.data;
|
|
for( int j = iterdepth-1; j >= 0 && _idx > 0; j-- )
|
|
{
|
|
int szi = A.size[j], t = _idx/szi;
|
|
data += (_idx - t * szi)*A.step[j];
|
|
_idx = t;
|
|
}
|
|
M.data = data;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
NAryMatIterator NAryMatIterator::operator ++(int)
|
|
{
|
|
NAryMatIterator it = *this;
|
|
++*this;
|
|
return it;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// MatConstIterator //
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
Point MatConstIterator::pos() const
|
|
{
|
|
if( !m )
|
|
return Point();
|
|
CV_DbgAssert(m->dims <= 2);
|
|
|
|
ptrdiff_t ofs = ptr - m->data;
|
|
int y = (int)(ofs/m->step[0]);
|
|
return Point((int)((ofs - y*m->step[0])/elemSize), y);
|
|
}
|
|
|
|
void MatConstIterator::pos(int* _idx) const
|
|
{
|
|
CV_Assert(m != 0 && _idx);
|
|
ptrdiff_t ofs = ptr - m->data;
|
|
for( int i = 0; i < m->dims; i++ )
|
|
{
|
|
size_t s = m->step[i], v = ofs/s;
|
|
ofs -= v*s;
|
|
_idx[i] = (int)v;
|
|
}
|
|
}
|
|
|
|
ptrdiff_t MatConstIterator::lpos() const
|
|
{
|
|
if(!m)
|
|
return 0;
|
|
if( m->isContinuous() )
|
|
return (ptr - sliceStart)/elemSize;
|
|
ptrdiff_t ofs = ptr - m->data;
|
|
int i, d = m->dims;
|
|
if( d == 2 )
|
|
{
|
|
ptrdiff_t y = ofs/m->step[0];
|
|
return y*m->cols + (ofs - y*m->step[0])/elemSize;
|
|
}
|
|
ptrdiff_t result = 0;
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
size_t s = m->step[i], v = ofs/s;
|
|
ofs -= v*s;
|
|
result = result*m->size[i] + v;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void MatConstIterator::seek(ptrdiff_t ofs, bool relative)
|
|
{
|
|
if( m->isContinuous() )
|
|
{
|
|
ptr = (relative ? ptr : sliceStart) + ofs*elemSize;
|
|
if( ptr < sliceStart )
|
|
ptr = sliceStart;
|
|
else if( ptr > sliceEnd )
|
|
ptr = sliceEnd;
|
|
return;
|
|
}
|
|
|
|
int d = m->dims;
|
|
if( d == 2 )
|
|
{
|
|
ptrdiff_t ofs0, y;
|
|
if( relative )
|
|
{
|
|
ofs0 = ptr - m->data;
|
|
y = ofs0/m->step[0];
|
|
ofs += y*m->cols + (ofs0 - y*m->step[0])/elemSize;
|
|
}
|
|
y = ofs/m->cols;
|
|
int y1 = std::min(std::max((int)y, 0), m->rows-1);
|
|
sliceStart = m->data + y1*m->step[0];
|
|
sliceEnd = sliceStart + (m->cols-1)*elemSize;
|
|
ptr = y < 0 ? sliceStart : y >= m->rows ? sliceEnd :
|
|
sliceStart + (ofs - y*m->cols)*elemSize;
|
|
return;
|
|
}
|
|
|
|
if( relative )
|
|
ofs += lpos();
|
|
|
|
if( ofs < 0 )
|
|
ofs = 0;
|
|
|
|
int szi = m->size[d-1];
|
|
ptrdiff_t t = ofs/szi;
|
|
int v = (int)(ofs - t*szi);
|
|
ofs = t;
|
|
ptr = m->data + v*elemSize;
|
|
sliceStart = m->data;
|
|
|
|
for( int i = d-2; i >= 0; i-- )
|
|
{
|
|
szi = m->size[i];
|
|
t = ofs/szi;
|
|
v = (int)(ofs - t*szi);
|
|
ofs = t;
|
|
sliceStart += v*m->step[i];
|
|
}
|
|
|
|
sliceEnd = sliceStart + m->size[d-1]*elemSize;
|
|
if( ofs > 0 )
|
|
ptr = sliceEnd;
|
|
else
|
|
ptr = sliceStart + (ptr - m->data);
|
|
}
|
|
|
|
void MatConstIterator::seek(const int* _idx, bool relative)
|
|
{
|
|
int i, d = m->dims;
|
|
ptrdiff_t ofs = 0;
|
|
if( !_idx )
|
|
;
|
|
else if( d == 2 )
|
|
ofs = _idx[0]*m->size[1] + _idx[1];
|
|
else
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
ofs = ofs*m->size[i] + _idx[i];
|
|
}
|
|
seek(ofs, relative);
|
|
}
|
|
|
|
ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a)
|
|
{
|
|
if( a.m != b.m )
|
|
return INT_MAX;
|
|
if( a.sliceEnd == b.sliceEnd )
|
|
return (b.ptr - a.ptr)/b.elemSize;
|
|
|
|
return b.lpos() - a.lpos();
|
|
}
|
|
|
|
//////////////////////////////// SparseMat ////////////////////////////////
|
|
|
|
template<typename T1, typename T2> void
|
|
convertData_(const void* _from, void* _to, int cn)
|
|
{
|
|
const T1* from = (const T1*)_from;
|
|
T2* to = (T2*)_to;
|
|
if( cn == 1 )
|
|
*to = saturate_cast<T2>(*from);
|
|
else
|
|
for( int i = 0; i < cn; i++ )
|
|
to[i] = saturate_cast<T2>(from[i]);
|
|
}
|
|
|
|
template<typename T1, typename T2> void
|
|
convertScaleData_(const void* _from, void* _to, int cn, double alpha, double beta)
|
|
{
|
|
const T1* from = (const T1*)_from;
|
|
T2* to = (T2*)_to;
|
|
if( cn == 1 )
|
|
*to = saturate_cast<T2>(*from*alpha + beta);
|
|
else
|
|
for( int i = 0; i < cn; i++ )
|
|
to[i] = saturate_cast<T2>(from[i]*alpha + beta);
|
|
}
|
|
|
|
ConvertData getConvertData(int fromType, int toType)
|
|
{
|
|
static ConvertData tab[][8] =
|
|
{{ convertData_<uchar, uchar>, convertData_<uchar, schar>,
|
|
convertData_<uchar, ushort>, convertData_<uchar, short>,
|
|
convertData_<uchar, int>, convertData_<uchar, float>,
|
|
convertData_<uchar, double>, 0 },
|
|
|
|
{ convertData_<schar, uchar>, convertData_<schar, schar>,
|
|
convertData_<schar, ushort>, convertData_<schar, short>,
|
|
convertData_<schar, int>, convertData_<schar, float>,
|
|
convertData_<schar, double>, 0 },
|
|
|
|
{ convertData_<ushort, uchar>, convertData_<ushort, schar>,
|
|
convertData_<ushort, ushort>, convertData_<ushort, short>,
|
|
convertData_<ushort, int>, convertData_<ushort, float>,
|
|
convertData_<ushort, double>, 0 },
|
|
|
|
{ convertData_<short, uchar>, convertData_<short, schar>,
|
|
convertData_<short, ushort>, convertData_<short, short>,
|
|
convertData_<short, int>, convertData_<short, float>,
|
|
convertData_<short, double>, 0 },
|
|
|
|
{ convertData_<int, uchar>, convertData_<int, schar>,
|
|
convertData_<int, ushort>, convertData_<int, short>,
|
|
convertData_<int, int>, convertData_<int, float>,
|
|
convertData_<int, double>, 0 },
|
|
|
|
{ convertData_<float, uchar>, convertData_<float, schar>,
|
|
convertData_<float, ushort>, convertData_<float, short>,
|
|
convertData_<float, int>, convertData_<float, float>,
|
|
convertData_<float, double>, 0 },
|
|
|
|
{ convertData_<double, uchar>, convertData_<double, schar>,
|
|
convertData_<double, ushort>, convertData_<double, short>,
|
|
convertData_<double, int>, convertData_<double, float>,
|
|
convertData_<double, double>, 0 },
|
|
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
|
|
ConvertData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
CV_Assert( func != 0 );
|
|
return func;
|
|
}
|
|
|
|
ConvertScaleData getConvertScaleData(int fromType, int toType)
|
|
{
|
|
static ConvertScaleData tab[][8] =
|
|
{{ convertScaleData_<uchar, uchar>, convertScaleData_<uchar, schar>,
|
|
convertScaleData_<uchar, ushort>, convertScaleData_<uchar, short>,
|
|
convertScaleData_<uchar, int>, convertScaleData_<uchar, float>,
|
|
convertScaleData_<uchar, double>, 0 },
|
|
|
|
{ convertScaleData_<schar, uchar>, convertScaleData_<schar, schar>,
|
|
convertScaleData_<schar, ushort>, convertScaleData_<schar, short>,
|
|
convertScaleData_<schar, int>, convertScaleData_<schar, float>,
|
|
convertScaleData_<schar, double>, 0 },
|
|
|
|
{ convertScaleData_<ushort, uchar>, convertScaleData_<ushort, schar>,
|
|
convertScaleData_<ushort, ushort>, convertScaleData_<ushort, short>,
|
|
convertScaleData_<ushort, int>, convertScaleData_<ushort, float>,
|
|
convertScaleData_<ushort, double>, 0 },
|
|
|
|
{ convertScaleData_<short, uchar>, convertScaleData_<short, schar>,
|
|
convertScaleData_<short, ushort>, convertScaleData_<short, short>,
|
|
convertScaleData_<short, int>, convertScaleData_<short, float>,
|
|
convertScaleData_<short, double>, 0 },
|
|
|
|
{ convertScaleData_<int, uchar>, convertScaleData_<int, schar>,
|
|
convertScaleData_<int, ushort>, convertScaleData_<int, short>,
|
|
convertScaleData_<int, int>, convertScaleData_<int, float>,
|
|
convertScaleData_<int, double>, 0 },
|
|
|
|
{ convertScaleData_<float, uchar>, convertScaleData_<float, schar>,
|
|
convertScaleData_<float, ushort>, convertScaleData_<float, short>,
|
|
convertScaleData_<float, int>, convertScaleData_<float, float>,
|
|
convertScaleData_<float, double>, 0 },
|
|
|
|
{ convertScaleData_<double, uchar>, convertScaleData_<double, schar>,
|
|
convertScaleData_<double, ushort>, convertScaleData_<double, short>,
|
|
convertScaleData_<double, int>, convertScaleData_<double, float>,
|
|
convertScaleData_<double, double>, 0 },
|
|
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
|
|
ConvertScaleData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
CV_Assert( func != 0 );
|
|
return func;
|
|
}
|
|
|
|
enum { HASH_SIZE0 = 8 };
|
|
|
|
static inline void copyElem(const uchar* from, uchar* to, size_t elemSize)
|
|
{
|
|
size_t i;
|
|
for( i = 0; (int)i <= (int)(elemSize - sizeof(int)); i += sizeof(int) )
|
|
*(int*)(to + i) = *(const int*)(from + i);
|
|
for( ; i < elemSize; i++ )
|
|
to[i] = from[i];
|
|
}
|
|
|
|
static inline bool isZeroElem(const uchar* data, size_t elemSize)
|
|
{
|
|
size_t i;
|
|
for( i = 0; i <= elemSize - sizeof(int); i += sizeof(int) )
|
|
if( *(int*)(data + i) != 0 )
|
|
return false;
|
|
for( ; i < elemSize; i++ )
|
|
if( data[i] != 0 )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
SparseMat::Hdr::Hdr( int _dims, const int* _sizes, int _type )
|
|
{
|
|
refcount = 1;
|
|
|
|
dims = _dims;
|
|
valueOffset = (int)alignSize(sizeof(SparseMat::Node) +
|
|
sizeof(int)*std::max(dims - CV_MAX_DIM, 0), CV_ELEM_SIZE1(_type));
|
|
nodeSize = alignSize(valueOffset +
|
|
CV_ELEM_SIZE(_type), (int)sizeof(size_t));
|
|
|
|
int i;
|
|
for( i = 0; i < dims; i++ )
|
|
size[i] = _sizes[i];
|
|
for( ; i < CV_MAX_DIM; i++ )
|
|
size[i] = 0;
|
|
clear();
|
|
}
|
|
|
|
void SparseMat::Hdr::clear()
|
|
{
|
|
hashtab.clear();
|
|
hashtab.resize(HASH_SIZE0);
|
|
pool.clear();
|
|
pool.resize(nodeSize);
|
|
nodeCount = freeList = 0;
|
|
}
|
|
|
|
|
|
SparseMat::SparseMat(const Mat& m)
|
|
: flags(MAGIC_VAL), hdr(0)
|
|
{
|
|
create( m.dims, m.size, m.type() );
|
|
|
|
int i, idx[CV_MAX_DIM] = {0}, d = m.dims, lastSize = m.size[d - 1];
|
|
size_t esz = m.elemSize();
|
|
uchar* ptr = m.data;
|
|
|
|
for(;;)
|
|
{
|
|
for( i = 0; i < lastSize; i++, ptr += esz )
|
|
{
|
|
if( isZeroElem(ptr, esz) )
|
|
continue;
|
|
idx[d-1] = i;
|
|
uchar* to = newNode(idx, hash(idx));
|
|
copyElem( ptr, to, esz );
|
|
}
|
|
|
|
for( i = d - 2; i >= 0; i-- )
|
|
{
|
|
ptr += m.step[i] - m.size[i+1]*m.step[i+1];
|
|
if( ++idx[i] < m.size[i] )
|
|
break;
|
|
idx[i] = 0;
|
|
}
|
|
if( i < 0 )
|
|
break;
|
|
}
|
|
}
|
|
|
|
SparseMat::SparseMat(const CvSparseMat* m)
|
|
: flags(MAGIC_VAL), hdr(0)
|
|
{
|
|
CV_Assert(m);
|
|
create( m->dims, &m->size[0], m->type );
|
|
|
|
CvSparseMatIterator it;
|
|
CvSparseNode* n = cvInitSparseMatIterator(m, &it);
|
|
size_t esz = elemSize();
|
|
|
|
for( ; n != 0; n = cvGetNextSparseNode(&it) )
|
|
{
|
|
const int* idx = CV_NODE_IDX(m, n);
|
|
uchar* to = newNode(idx, hash(idx));
|
|
copyElem((const uchar*)CV_NODE_VAL(m, n), to, esz);
|
|
}
|
|
}
|
|
|
|
void SparseMat::create(int d, const int* _sizes, int _type)
|
|
{
|
|
int i;
|
|
CV_Assert( _sizes && 0 < d && d <= CV_MAX_DIM );
|
|
for( i = 0; i < d; i++ )
|
|
CV_Assert( _sizes[i] > 0 );
|
|
_type = CV_MAT_TYPE(_type);
|
|
if( hdr && _type == type() && hdr->dims == d && hdr->refcount == 1 )
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
if( _sizes[i] != hdr->size[i] )
|
|
break;
|
|
if( i == d )
|
|
{
|
|
clear();
|
|
return;
|
|
}
|
|
}
|
|
release();
|
|
flags = MAGIC_VAL | _type;
|
|
hdr = new Hdr(d, _sizes, _type);
|
|
}
|
|
|
|
void SparseMat::copyTo( SparseMat& m ) const
|
|
{
|
|
if( hdr == m.hdr )
|
|
return;
|
|
if( !hdr )
|
|
{
|
|
m.release();
|
|
return;
|
|
}
|
|
m.create( hdr->dims, hdr->size, type() );
|
|
SparseMatConstIterator from = begin();
|
|
size_t i, N = nzcount(), esz = elemSize();
|
|
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.newNode(n->idx, n->hashval);
|
|
copyElem( from.ptr, to, esz );
|
|
}
|
|
}
|
|
|
|
void SparseMat::copyTo( Mat& m ) const
|
|
{
|
|
CV_Assert( hdr );
|
|
m.create( dims(), hdr->size, type() );
|
|
m = Scalar(0);
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t i, N = nzcount(), esz = elemSize();
|
|
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
copyElem( from.ptr, m.ptr(n->idx), esz);
|
|
}
|
|
}
|
|
|
|
|
|
void SparseMat::convertTo( SparseMat& m, int rtype, double alpha ) const
|
|
{
|
|
int cn = channels();
|
|
if( rtype < 0 )
|
|
rtype = type();
|
|
rtype = CV_MAKETYPE(rtype, cn);
|
|
if( hdr == m.hdr && rtype != type() )
|
|
{
|
|
SparseMat temp;
|
|
convertTo(temp, rtype, alpha);
|
|
m = temp;
|
|
return;
|
|
}
|
|
|
|
CV_Assert(hdr != 0);
|
|
if( hdr != m.hdr )
|
|
m.create( hdr->dims, hdr->size, rtype );
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t i, N = nzcount();
|
|
|
|
if( alpha == 1 )
|
|
{
|
|
ConvertData cvtfunc = getConvertData(type(), rtype);
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
cvtfunc( from.ptr, to, cn );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ConvertScaleData cvtfunc = getConvertScaleData(type(), rtype);
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
cvtfunc( from.ptr, to, cn, alpha, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SparseMat::convertTo( Mat& m, int rtype, double alpha, double beta ) const
|
|
{
|
|
int cn = channels();
|
|
if( rtype < 0 )
|
|
rtype = type();
|
|
rtype = CV_MAKETYPE(rtype, cn);
|
|
|
|
CV_Assert( hdr );
|
|
m.create( dims(), hdr->size, rtype );
|
|
m = Scalar(beta);
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t i, N = nzcount();
|
|
|
|
if( alpha == 1 && beta == 0 )
|
|
{
|
|
ConvertData cvtfunc = getConvertData(type(), rtype);
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.ptr(n->idx);
|
|
cvtfunc( from.ptr, to, cn );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ConvertScaleData cvtfunc = getConvertScaleData(type(), rtype);
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = m.ptr(n->idx);
|
|
cvtfunc( from.ptr, to, cn, alpha, beta );
|
|
}
|
|
}
|
|
}
|
|
|
|
void SparseMat::clear()
|
|
{
|
|
if( hdr )
|
|
hdr->clear();
|
|
}
|
|
|
|
SparseMat::operator CvSparseMat*() const
|
|
{
|
|
if( !hdr )
|
|
return 0;
|
|
CvSparseMat* m = cvCreateSparseMat(hdr->dims, hdr->size, type());
|
|
|
|
SparseMatConstIterator from = begin();
|
|
size_t i, N = nzcount(), esz = elemSize();
|
|
|
|
for( i = 0; i < N; i++, ++from )
|
|
{
|
|
const Node* n = from.node();
|
|
uchar* to = cvPtrND(m, n->idx, 0, -2, 0);
|
|
copyElem(from.ptr, to, esz);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(int i0, int i1, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 2 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
return &value<uchar>(elem);
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( createMissing )
|
|
{
|
|
int idx[] = { i0, i1 };
|
|
return newNode( idx, h );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 3 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
return &value<uchar>(elem);
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( createMissing )
|
|
{
|
|
int idx[] = { i0, i1, i2 };
|
|
return newNode( idx, h );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uchar* SparseMat::ptr(const int* idx, bool createMissing, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr );
|
|
int i, d = hdr->dims;
|
|
size_t h = hashval ? *hashval : hash(idx);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h )
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
if( elem->idx[i] != idx[i] )
|
|
break;
|
|
if( i == d )
|
|
return &value<uchar>(elem);
|
|
}
|
|
nidx = elem->next;
|
|
}
|
|
|
|
return createMissing ? newNode(idx, h) : 0;
|
|
}
|
|
|
|
void SparseMat::erase(int i0, int i1, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 2 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
break;
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::erase(int i0, int i1, int i2, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr && hdr->dims == 3 );
|
|
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
break;
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::erase(const int* idx, size_t* hashval)
|
|
{
|
|
CV_Assert( hdr );
|
|
int i, d = hdr->dims;
|
|
size_t h = hashval ? *hashval : hash(idx);
|
|
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
uchar* pool = &hdr->pool[0];
|
|
while( nidx != 0 )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
if( elem->hashval == h )
|
|
{
|
|
for( i = 0; i < d; i++ )
|
|
if( elem->idx[i] != idx[i] )
|
|
break;
|
|
if( i == d )
|
|
break;
|
|
}
|
|
previdx = nidx;
|
|
nidx = elem->next;
|
|
}
|
|
|
|
if( nidx )
|
|
removeNode(hidx, nidx, previdx);
|
|
}
|
|
|
|
void SparseMat::resizeHashTab(size_t newsize)
|
|
{
|
|
newsize = std::max(newsize, (size_t)8);
|
|
if((newsize & (newsize-1)) != 0)
|
|
newsize = (size_t)1 << cvCeil(std::log((double)newsize)/CV_LOG2);
|
|
|
|
size_t i, hsize = hdr->hashtab.size();
|
|
vector<size_t> _newh(newsize);
|
|
size_t* newh = &_newh[0];
|
|
for( i = 0; i < newsize; i++ )
|
|
newh[i] = 0;
|
|
uchar* pool = &hdr->pool[0];
|
|
for( i = 0; i < hsize; i++ )
|
|
{
|
|
size_t nidx = hdr->hashtab[i];
|
|
while( nidx )
|
|
{
|
|
Node* elem = (Node*)(pool + nidx);
|
|
size_t next = elem->next;
|
|
size_t newhidx = elem->hashval & (newsize - 1);
|
|
elem->next = newh[newhidx];
|
|
newh[newhidx] = nidx;
|
|
nidx = next;
|
|
}
|
|
}
|
|
hdr->hashtab = _newh;
|
|
}
|
|
|
|
uchar* SparseMat::newNode(const int* idx, size_t hashval)
|
|
{
|
|
const int HASH_MAX_FILL_FACTOR=3;
|
|
assert(hdr);
|
|
size_t hsize = hdr->hashtab.size();
|
|
if( ++hdr->nodeCount > hsize*HASH_MAX_FILL_FACTOR )
|
|
{
|
|
resizeHashTab(std::max(hsize*2, (size_t)8));
|
|
hsize = hdr->hashtab.size();
|
|
}
|
|
|
|
if( !hdr->freeList )
|
|
{
|
|
size_t i, nsz = hdr->nodeSize, psize = hdr->pool.size(),
|
|
newpsize = std::max(psize*2, 8*nsz);
|
|
hdr->pool.resize(newpsize);
|
|
uchar* pool = &hdr->pool[0];
|
|
hdr->freeList = std::max(psize, nsz);
|
|
for( i = hdr->freeList; i < newpsize - nsz; i += nsz )
|
|
((Node*)(pool + i))->next = i + nsz;
|
|
((Node*)(pool + i))->next = 0;
|
|
}
|
|
size_t nidx = hdr->freeList;
|
|
Node* elem = (Node*)&hdr->pool[nidx];
|
|
hdr->freeList = elem->next;
|
|
elem->hashval = hashval;
|
|
size_t hidx = hashval & (hsize - 1);
|
|
elem->next = hdr->hashtab[hidx];
|
|
hdr->hashtab[hidx] = nidx;
|
|
|
|
int i, d = hdr->dims;
|
|
for( i = 0; i < d; i++ )
|
|
elem->idx[i] = idx[i];
|
|
size_t esz = elemSize();
|
|
uchar* p = &value<uchar>(elem);
|
|
if( esz == sizeof(float) )
|
|
*((float*)p) = 0.f;
|
|
else if( esz == sizeof(double) )
|
|
*((double*)p) = 0.;
|
|
else
|
|
memset(p, 0, esz);
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
void SparseMat::removeNode(size_t hidx, size_t nidx, size_t previdx)
|
|
{
|
|
Node* n = node(nidx);
|
|
if( previdx )
|
|
{
|
|
Node* prev = node(previdx);
|
|
prev->next = n->next;
|
|
}
|
|
else
|
|
hdr->hashtab[hidx] = n->next;
|
|
n->next = hdr->freeList;
|
|
hdr->freeList = nidx;
|
|
--hdr->nodeCount;
|
|
}
|
|
|
|
|
|
SparseMatConstIterator::SparseMatConstIterator(const SparseMat* _m)
|
|
: m((SparseMat*)_m), hashidx(0), ptr(0)
|
|
{
|
|
if(!_m || !_m->hdr)
|
|
return;
|
|
SparseMat::Hdr& hdr = *m->hdr;
|
|
const vector<size_t>& htab = hdr.hashtab;
|
|
size_t i, hsize = htab.size();
|
|
for( i = 0; i < hsize; i++ )
|
|
{
|
|
size_t nidx = htab[i];
|
|
if( nidx )
|
|
{
|
|
hashidx = i;
|
|
ptr = &hdr.pool[nidx] + hdr.valueOffset;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
SparseMatConstIterator& SparseMatConstIterator::operator ++()
|
|
{
|
|
if( !ptr || !m || !m->hdr )
|
|
return *this;
|
|
SparseMat::Hdr& hdr = *m->hdr;
|
|
size_t next = ((const SparseMat::Node*)(ptr - hdr.valueOffset))->next;
|
|
if( next )
|
|
{
|
|
ptr = &hdr.pool[next] + hdr.valueOffset;
|
|
return *this;
|
|
}
|
|
size_t i = hashidx + 1, sz = hdr.hashtab.size();
|
|
for( ; i < sz; i++ )
|
|
{
|
|
size_t nidx = hdr.hashtab[i];
|
|
if( nidx )
|
|
{
|
|
hashidx = i;
|
|
ptr = &hdr.pool[nidx] + hdr.valueOffset;
|
|
return *this;
|
|
}
|
|
}
|
|
hashidx = sz;
|
|
ptr = 0;
|
|
return *this;
|
|
}
|
|
|
|
|
|
double norm( const SparseMat& src, int normType )
|
|
{
|
|
SparseMatConstIterator it = src.begin();
|
|
|
|
size_t i, N = src.nzcount();
|
|
normType &= NORM_TYPE_MASK;
|
|
int type = src.type();
|
|
double result = 0;
|
|
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
if( normType == NORM_INF )
|
|
for( i = 0; i < N; i++, ++it )
|
|
result = std::max(result, std::abs((double)*(const float*)it.ptr));
|
|
else if( normType == NORM_L1 )
|
|
for( i = 0; i < N; i++, ++it )
|
|
result += std::abs(*(const float*)it.ptr);
|
|
else
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
double v = *(const float*)it.ptr;
|
|
result += v*v;
|
|
}
|
|
}
|
|
else if( type == CV_64F )
|
|
{
|
|
if( normType == NORM_INF )
|
|
for( i = 0; i < N; i++, ++it )
|
|
result = std::max(result, std::abs(*(const double*)it.ptr));
|
|
else if( normType == NORM_L1 )
|
|
for( i = 0; i < N; i++, ++it )
|
|
result += std::abs(*(const double*)it.ptr);
|
|
else
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
double v = *(const double*)it.ptr;
|
|
result += v*v;
|
|
}
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
|
|
if( normType == NORM_L2 )
|
|
result = std::sqrt(result);
|
|
return result;
|
|
}
|
|
|
|
void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _minidx, int* _maxidx )
|
|
{
|
|
SparseMatConstIterator it = src.begin();
|
|
size_t i, N = src.nzcount(), d = src.hdr ? src.hdr->dims : 0;
|
|
int type = src.type();
|
|
const int *minidx = 0, *maxidx = 0;
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
float minval = FLT_MAX, maxval = -FLT_MAX;
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
float v = *(const float*)it.ptr;
|
|
if( v < minval )
|
|
{
|
|
minval = v;
|
|
minidx = it.node()->idx;
|
|
}
|
|
if( v > maxval )
|
|
{
|
|
maxval = v;
|
|
maxidx = it.node()->idx;
|
|
}
|
|
}
|
|
if( _minval )
|
|
*_minval = minval;
|
|
if( _maxval )
|
|
*_maxval = maxval;
|
|
}
|
|
else if( type == CV_64F )
|
|
{
|
|
double minval = DBL_MAX, maxval = -DBL_MAX;
|
|
for( i = 0; i < N; i++, ++it )
|
|
{
|
|
double v = *(const double*)it.ptr;
|
|
if( v < minval )
|
|
{
|
|
minval = v;
|
|
minidx = it.node()->idx;
|
|
}
|
|
if( v > maxval )
|
|
{
|
|
maxval = v;
|
|
maxidx = it.node()->idx;
|
|
}
|
|
}
|
|
if( _minval )
|
|
*_minval = minval;
|
|
if( _maxval )
|
|
*_maxval = maxval;
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
|
|
if( _minidx )
|
|
for( i = 0; i < d; i++ )
|
|
_minidx[i] = minidx[i];
|
|
if( _maxidx )
|
|
for( i = 0; i < d; i++ )
|
|
_maxidx[i] = maxidx[i];
|
|
}
|
|
|
|
|
|
void normalize( const SparseMat& src, SparseMat& dst, double a, int norm_type )
|
|
{
|
|
double scale = 1;
|
|
if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
|
|
{
|
|
scale = norm( src, norm_type );
|
|
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
|
}
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
|
|
|
src.convertTo( dst, -1, scale );
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|