448 lines
20 KiB
C++
448 lines
20 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_CUDAFEATURES2D_HPP__
|
|
#define __OPENCV_CUDAFEATURES2D_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error cudafeatures2d.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
#include "opencv2/cudafilters.hpp"
|
|
|
|
/**
|
|
@addtogroup cuda
|
|
@{
|
|
@defgroup cudafeatures2d Feature Detection and Description
|
|
@}
|
|
*/
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//! @addtogroup cudafeatures2d
|
|
//! @{
|
|
|
|
/** @brief Brute-force descriptor matcher.
|
|
|
|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
|
|
by trying each one. This descriptor matcher supports masking permissible matches between descriptor
|
|
sets.
|
|
|
|
The class BFMatcher\_CUDA has an interface similar to the class DescriptorMatcher. It has two groups
|
|
of match methods: for matching descriptors of one image with another image or with an image set.
|
|
Also, all functions have an alternative to save results either to the GPU memory or to the CPU
|
|
memory.
|
|
|
|
@sa DescriptorMatcher, BFMatcher
|
|
*/
|
|
class CV_EXPORTS BFMatcher_CUDA
|
|
{
|
|
public:
|
|
explicit BFMatcher_CUDA(int norm = cv::NORM_L2);
|
|
|
|
//! Add descriptors to train descriptor collection
|
|
void add(const std::vector<GpuMat>& descCollection);
|
|
|
|
//! Get train descriptors collection
|
|
const std::vector<GpuMat>& getTrainDescriptors() const;
|
|
|
|
//! Clear train descriptors collection
|
|
void clear();
|
|
|
|
//! Return true if there are not train descriptors in collection
|
|
bool empty() const;
|
|
|
|
//! Return true if the matcher supports mask in match methods
|
|
bool isMaskSupported() const;
|
|
|
|
//! Find one best match for each query descriptor
|
|
void matchSingle(const GpuMat& query, const GpuMat& train,
|
|
GpuMat& trainIdx, GpuMat& distance,
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx and distance and convert it to CPU vector with DMatch
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
//! Convert trainIdx and distance to vector with DMatch
|
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
//! Find one best match for each query descriptor
|
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
|
|
|
|
//! Make gpu collection of trains and masks in suitable format for matchCollection function
|
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
//! Find one best match from train collection for each query descriptor
|
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx, imgIdx and distance and convert it to vector with DMatch
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
//! Convert trainIdx, imgIdx and distance to vector with DMatch
|
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
//! Find one best match from train collection for each query descriptor.
|
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances)
|
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx and distance and convert it to vector with DMatch
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
//! Convert trainIdx and distance to vector with DMatch
|
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances).
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
void knnMatch(const GpuMat& query, const GpuMat& train,
|
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
|
|
bool compactResult = false);
|
|
|
|
//! Find k best matches from train collection for each query descriptor (in increasing order of distances)
|
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx and distance and convert it to vector with DMatch
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
//! @see BFMatcher_CUDA::knnMatchDownload
|
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
//! Convert trainIdx and distance to vector with DMatch
|
|
//! @see BFMatcher_CUDA::knnMatchConvert
|
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances).
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance.
|
|
//! nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
|
|
//! carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
|
|
//! because it didn't have enough memory.
|
|
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
|
|
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
//! Matches doesn't sorted.
|
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx, nMatches and distance and convert it to vector with DMatch.
|
|
//! matches will be sorted in increasing order of distances.
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
//! Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance
|
|
//! in increasing order of distances).
|
|
void radiusMatch(const GpuMat& query, const GpuMat& train,
|
|
std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
const GpuMat& mask = GpuMat(), bool compactResult = false);
|
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance.
|
|
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
|
|
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
//! Matches doesn't sorted.
|
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
|
|
|
|
//! Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
|
|
//! matches will be sorted in increasing order of distances.
|
|
//! compactResult is used when mask is not empty. If compactResult is false matches
|
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
//! matches vector will not contain matches for fully masked out query descriptors.
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
//! Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
//! Find best matches from train collection for each query descriptor which have distance less than
|
|
//! maxDistance (in increasing order of distances).
|
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
int norm;
|
|
|
|
private:
|
|
std::vector<GpuMat> trainDescCollection;
|
|
};
|
|
|
|
/** @brief Class used for corner detection using the FAST algorithm. :
|
|
*/
|
|
class CV_EXPORTS FAST_CUDA
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
LOCATION_ROW = 0,
|
|
RESPONSE_ROW,
|
|
ROWS_COUNT
|
|
};
|
|
|
|
//! all features have same size
|
|
static const int FEATURE_SIZE = 7;
|
|
|
|
/** @brief Constructor.
|
|
|
|
@param threshold Threshold on difference between intensity of the central pixel and pixels on a
|
|
circle around this pixel.
|
|
@param nonmaxSuppression If it is true, non-maximum suppression is applied to detected corners
|
|
(keypoints).
|
|
@param keypointsRatio Inner buffer size for keypoints store is determined as (keypointsRatio \*
|
|
image\_width \* image\_height).
|
|
*/
|
|
explicit FAST_CUDA(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);
|
|
|
|
/** @brief Finds the keypoints using FAST detector.
|
|
|
|
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
|
|
supported.
|
|
@param mask Optional input mask that marks the regions where we should detect features.
|
|
@param keypoints The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU
|
|
memory:
|
|
- keypoints.ptr\<Vec2s\>(LOCATION\_ROW)[i] will contain location of i'th point
|
|
- keypoints.ptr\<float\>(RESPONSE\_ROW)[i] will contain response of i'th point (if non-maximum
|
|
suppression is applied)
|
|
*/
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
/** @overload */
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
|
|
/** @brief Download keypoints from GPU to CPU memory.
|
|
*/
|
|
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
|
|
*/
|
|
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
/** @brief Releases inner buffer memory.
|
|
*/
|
|
void release();
|
|
|
|
bool nonmaxSuppression;
|
|
|
|
int threshold;
|
|
|
|
//! max keypoints = keypointsRatio * img.size().area()
|
|
double keypointsRatio;
|
|
|
|
/** @brief Find keypoints and compute it's response if nonmaxSuppression is true.
|
|
|
|
@param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are
|
|
supported.
|
|
@param mask Optional input mask that marks the regions where we should detect features.
|
|
|
|
The function returns count of detected keypoints.
|
|
*/
|
|
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
|
|
|
|
/** @brief Gets final array of keypoints.
|
|
|
|
@param keypoints The output vector of keypoints.
|
|
|
|
The function performs non-max suppression if needed and returns final count of keypoints.
|
|
*/
|
|
int getKeyPoints(GpuMat& keypoints);
|
|
|
|
private:
|
|
GpuMat kpLoc_;
|
|
int count_;
|
|
|
|
GpuMat score_;
|
|
|
|
GpuMat d_keypoints_;
|
|
};
|
|
|
|
/** @brief Class for extracting ORB features and descriptors from an image. :
|
|
*/
|
|
class CV_EXPORTS ORB_CUDA
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
X_ROW = 0,
|
|
Y_ROW,
|
|
RESPONSE_ROW,
|
|
ANGLE_ROW,
|
|
OCTAVE_ROW,
|
|
SIZE_ROW,
|
|
ROWS_COUNT
|
|
};
|
|
|
|
enum
|
|
{
|
|
DEFAULT_FAST_THRESHOLD = 20
|
|
};
|
|
|
|
/** @brief Constructor.
|
|
|
|
@param nFeatures The number of desired features.
|
|
@param scaleFactor Coefficient by which we divide the dimensions from one scale pyramid level to
|
|
the next.
|
|
@param nLevels The number of levels in the scale pyramid.
|
|
@param edgeThreshold How far from the boundary the points should be.
|
|
@param firstLevel The level at which the image is given. If 1, that means we will also look at the
|
|
image scaleFactor times bigger.
|
|
@param WTA_K
|
|
@param scoreType
|
|
@param patchSize
|
|
*/
|
|
explicit ORB_CUDA(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
|
|
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
|
|
|
|
/** @overload */
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
/** @overload */
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
|
|
/** @brief Detects keypoints and computes descriptors for them.
|
|
|
|
@param image Input 8-bit grayscale image.
|
|
@param mask Optional input mask that marks the regions where we should detect features.
|
|
@param keypoints The input/output vector of keypoints. Can be stored both in CPU and GPU memory.
|
|
For GPU memory:
|
|
- keypoints.ptr\<float\>(X\_ROW)[i] contains x coordinate of the i'th feature.
|
|
- keypoints.ptr\<float\>(Y\_ROW)[i] contains y coordinate of the i'th feature.
|
|
- keypoints.ptr\<float\>(RESPONSE\_ROW)[i] contains the response of the i'th feature.
|
|
- keypoints.ptr\<float\>(ANGLE\_ROW)[i] contains orientation of the i'th feature.
|
|
- keypoints.ptr\<float\>(OCTAVE\_ROW)[i] contains the octave of the i'th feature.
|
|
- keypoints.ptr\<float\>(SIZE\_ROW)[i] contains the size of the i'th feature.
|
|
@param descriptors Computed descriptors. if blurForDescriptor is true, image will be blurred
|
|
before descriptors calculation.
|
|
*/
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
|
|
/** @overload */
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
|
|
|
|
/** @brief Download keypoints from GPU to CPU memory.
|
|
*/
|
|
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
|
|
*/
|
|
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
//! returns the descriptor size in bytes
|
|
inline int descriptorSize() const { return kBytes; }
|
|
|
|
inline void setFastParams(int threshold, bool nonmaxSuppression = true)
|
|
{
|
|
fastDetector_.threshold = threshold;
|
|
fastDetector_.nonmaxSuppression = nonmaxSuppression;
|
|
}
|
|
|
|
/** @brief Releases inner buffer memory.
|
|
*/
|
|
void release();
|
|
|
|
//! if true, image will be blurred before descriptors calculation
|
|
bool blurForDescriptor;
|
|
|
|
private:
|
|
enum { kBytes = 32 };
|
|
|
|
void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
|
|
|
|
void computeKeyPointsPyramid();
|
|
|
|
void computeDescriptors(GpuMat& descriptors);
|
|
|
|
void mergeKeyPoints(GpuMat& keypoints);
|
|
|
|
int nFeatures_;
|
|
float scaleFactor_;
|
|
int nLevels_;
|
|
int edgeThreshold_;
|
|
int firstLevel_;
|
|
int WTA_K_;
|
|
int scoreType_;
|
|
int patchSize_;
|
|
|
|
//! The number of desired features per scale
|
|
std::vector<size_t> n_features_per_level_;
|
|
|
|
//! Points to compute BRIEF descriptors from
|
|
GpuMat pattern_;
|
|
|
|
std::vector<GpuMat> imagePyr_;
|
|
std::vector<GpuMat> maskPyr_;
|
|
|
|
GpuMat buf_;
|
|
|
|
std::vector<GpuMat> keyPointsPyr_;
|
|
std::vector<int> keyPointsCount_;
|
|
|
|
FAST_CUDA fastDetector_;
|
|
|
|
Ptr<cuda::Filter> blurFilter;
|
|
|
|
GpuMat d_keypoints_;
|
|
};
|
|
|
|
//! @}
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
#endif /* __OPENCV_CUDAFEATURES2D_HPP__ */
|