247 lines
7.3 KiB
C++
247 lines
7.3 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and / or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#if !defined(ANDROID)
|
|
|
|
#include <string>
|
|
#include <fstream>
|
|
#include <vector>
|
|
|
|
#include "test_precomp.hpp"
|
|
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
|
# include <glob.h>
|
|
#else
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace {
|
|
|
|
using namespace cv::softcascade;
|
|
|
|
typedef vector<string> svector;
|
|
class ScaledDataset : public Dataset
|
|
{
|
|
public:
|
|
ScaledDataset(const string& path, const int octave);
|
|
|
|
virtual cv::Mat get(SampleType type, int idx) const;
|
|
virtual int available(SampleType type) const;
|
|
virtual ~ScaledDataset();
|
|
|
|
private:
|
|
svector pos;
|
|
svector neg;
|
|
};
|
|
|
|
string itoa(long i)
|
|
{
|
|
char s[65];
|
|
sprintf(s, "%ld", i);
|
|
return std::string(s);
|
|
}
|
|
|
|
|
|
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
|
|
|
void glob(const string& path, svector& ret)
|
|
{
|
|
glob_t glob_result;
|
|
glob(path.c_str(), GLOB_TILDE, 0, &glob_result);
|
|
|
|
ret.clear();
|
|
ret.reserve(glob_result.gl_pathc);
|
|
|
|
for(unsigned int i = 0; i < glob_result.gl_pathc; ++i)
|
|
{
|
|
ret.push_back(std::string(glob_result.gl_pathv[i]));
|
|
}
|
|
|
|
globfree(&glob_result);
|
|
}
|
|
|
|
#else
|
|
|
|
void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
|
|
{
|
|
std::string strFilePath; // File path
|
|
std::string strExtension; // Extension
|
|
|
|
std::string strPattern = refRoot + "\\*.*";
|
|
|
|
WIN32_FIND_DATA FileInformation; // File information
|
|
HANDLE hFile = ::FindFirstFile(strPattern.c_str(), &FileInformation);
|
|
|
|
if(hFile == INVALID_HANDLE_VALUE)
|
|
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
|
|
|
|
do
|
|
{
|
|
if(FileInformation.cFileName[0] != '.')
|
|
{
|
|
strFilePath.erase();
|
|
strFilePath = refRoot + "\\" + FileInformation.cFileName;
|
|
|
|
if( !(FileInformation.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) )
|
|
{
|
|
// Check extension
|
|
strExtension = FileInformation.cFileName;
|
|
strExtension = strExtension.substr(strExtension.rfind(".") + 1);
|
|
|
|
if(strExtension == refExt)
|
|
// Save filename
|
|
refvecFiles.push_back(strFilePath);
|
|
}
|
|
}
|
|
}
|
|
while(::FindNextFile(hFile, &FileInformation) == TRUE);
|
|
|
|
// Close handle
|
|
::FindClose(hFile);
|
|
|
|
DWORD dwError = ::GetLastError();
|
|
if(dwError != ERROR_NO_MORE_FILES)
|
|
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
|
|
}
|
|
|
|
#endif
|
|
|
|
ScaledDataset::ScaledDataset(const string& path, const int oct)
|
|
{
|
|
|
|
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
|
glob(path + "/pos/octave_" + itoa(oct) + "/*.png", pos);
|
|
#else
|
|
glob(path + "/pos/octave_" + itoa(oct), "png", pos);
|
|
#endif
|
|
|
|
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
|
glob(path + "/neg/octave_" + itoa(oct) + "/*.png", neg);
|
|
#else
|
|
glob(path + "/neg/octave_" + itoa(oct), "png", neg);
|
|
#endif
|
|
|
|
// Check: files not empty
|
|
CV_Assert(pos.size() != size_t(0));
|
|
CV_Assert(neg.size() != size_t(0));
|
|
}
|
|
|
|
cv::Mat ScaledDataset::get(SampleType type, int idx) const
|
|
{
|
|
const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx];
|
|
return cv::imread(src);
|
|
}
|
|
|
|
int ScaledDataset::available(SampleType type) const
|
|
{
|
|
return (int)((type == POSITIVE)? pos.size():neg.size());
|
|
}
|
|
|
|
ScaledDataset::~ScaledDataset(){}
|
|
|
|
}
|
|
|
|
TEST(DISABLED_SoftCascade, training)
|
|
{
|
|
// // 2. check and open output file
|
|
string outXmlPath = cv::tempfile(".xml");
|
|
cv::FileStorage fso(outXmlPath, cv::FileStorage::WRITE);
|
|
|
|
ASSERT_TRUE(fso.isOpened());
|
|
|
|
std::vector<int> octaves;
|
|
{
|
|
octaves.push_back(-1);
|
|
octaves.push_back(0);
|
|
}
|
|
|
|
fso << "regression-cascade"
|
|
<< "{"
|
|
<< "stageType" << "BOOST"
|
|
<< "featureType" << "ICF"
|
|
<< "octavesNum" << 2
|
|
<< "width" << 64
|
|
<< "height" << 128
|
|
<< "shrinkage" << 4
|
|
<< "octaves" << "[";
|
|
|
|
for (std::vector<int>::const_iterator it = octaves.begin(); it != octaves.end(); ++it)
|
|
{
|
|
int nfeatures = 100;
|
|
int shrinkage = 4;
|
|
float octave = powf(2.f, (float)(*it));
|
|
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage );
|
|
|
|
cv::Ptr<FeaturePool> pool = FeaturePool::create(model, nfeatures);
|
|
nfeatures = pool->size();
|
|
int npositives = 20;
|
|
int nnegatives = 40;
|
|
|
|
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave),
|
|
cvRound(64 * octave), cvRound(128 * octave));
|
|
|
|
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
|
|
|
|
std::string path = cvtest::TS::ptr()->get_data_path() + "softcascade/sample_training_set";
|
|
ScaledDataset dataset(path, *it);
|
|
|
|
if (boost->train(&dataset, pool, 3, 2))
|
|
{
|
|
cv::Mat thresholds;
|
|
boost->setRejectThresholds(thresholds);
|
|
boost->write(fso, pool, thresholds);
|
|
}
|
|
}
|
|
|
|
fso << "]" << "}";
|
|
fso.release();
|
|
|
|
|
|
cv::FileStorage actual(outXmlPath, cv::FileStorage::READ);
|
|
cv::FileNode root = actual.getFirstTopLevelNode();
|
|
|
|
cv::FileNode fn = root["octaves"];
|
|
ASSERT_FALSE(fn.empty());
|
|
}
|
|
|
|
#endif |