114 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Introduction
 | |
| ============
 | |
| 
 | |
| Cookbook
 | |
| --------
 | |
| 
 | |
| Here is a small collection of code fragments demonstrating some features
 | |
| of the OpenCV Python bindings.
 | |
| 
 | |
| Convert an image from png to jpg
 | |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| ::
 | |
| 
 | |
|     import cv
 | |
|     cv.SaveImage("foo.png", cv.LoadImage("foo.jpg"))
 | |
| 
 | |
| Compute the Laplacian
 | |
| ^^^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| ::
 | |
| 
 | |
|     im = cv.LoadImage("foo.png", 1)
 | |
|     dst = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 3);
 | |
|     laplace = cv.Laplace(im, dst)
 | |
|     cv.SaveImage("foo-laplace.png", dst)
 | |
| 
 | |
| 
 | |
| Using cvGoodFeaturesToTrack
 | |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| ::
 | |
| 
 | |
|     img = cv.LoadImage("foo.jpg")
 | |
|     eig_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
 | |
|     temp_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
 | |
|     # Find up to 300 corners using Harris
 | |
|     for (x,y) in cv.GoodFeaturesToTrack(img, eig_image, temp_image, 300, None, 1.0, use_harris = True):
 | |
|         print "good feature at", x,y
 | |
| 
 | |
| Using GetSubRect
 | |
| ^^^^^^^^^^^^^^^^
 | |
| 
 | |
| GetSubRect returns a rectangular part of another image.  It does this without copying any data.
 | |
| 
 | |
| ::
 | |
| 
 | |
|     img = cv.LoadImage("foo.jpg")
 | |
|     sub = cv.GetSubRect(img, (0, 0, 32, 32))  # sub is 32x32 patch from img top-left
 | |
|     cv.SetZero(sub)                           # clear sub to zero, which also clears 32x32 pixels in img
 | |
| 
 | |
| Using CreateMat, and accessing an element
 | |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| ::
 | |
| 
 | |
|     mat = cv.CreateMat(5, 5, cv.CV_32FC1)
 | |
|     mat[3,2] += 0.787
 | |
| 
 | |
| 
 | |
| ROS image message to OpenCV
 | |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| See this tutorial: http://www.ros.org/wiki/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
 | |
| 
 | |
| PIL Image to OpenCV
 | |
| ^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| (For details on PIL see the `PIL manual <http://www.pythonware.com/library/pil/handbook/image.htm>`_).
 | |
| 
 | |
| ::
 | |
| 
 | |
|     import Image
 | |
|     import cv
 | |
|     pi = Image.open('foo.png')       # PIL image
 | |
|     cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 1)
 | |
|     cv.SetData(cv_im, pi.tostring())
 | |
| 
 | |
| OpenCV to PIL Image
 | |
| ^^^^^^^^^^^^^^^^^^^
 | |
| 
 | |
| ::
 | |
| 
 | |
|     cv_im = cv.CreateImage((320,200), cv.IPL_DEPTH_8U, 1)
 | |
|     pi = Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())
 | |
| 
 | |
| NumPy and OpenCV
 | |
| ^^^^^^^^^^^^^^^^
 | |
| 
 | |
| Using the `array interface <http://docs.scipy.org/doc/numpy/reference/arrays.interface.html>`_, to use an OpenCV CvMat in NumPy::
 | |
| 
 | |
|     import cv
 | |
|     import numpy
 | |
|     mat = cv.CreateMat(5, 5, cv.CV_32FC1)
 | |
|     a = numpy.asarray(mat)
 | |
| 
 | |
| and to use a NumPy array in OpenCV::
 | |
| 
 | |
|     a = numpy.ones((640, 480))
 | |
|     mat = cv.fromarray(a)
 | |
| 
 | |
| even easier, most OpenCV functions can work on NumPy arrays directly, for example::
 | |
| 
 | |
|     picture = numpy.ones((640, 480))
 | |
|     cv.Smooth(picture, picture, cv.CV_GAUSSIAN, 15, 15)
 | |
| 
 | |
| Given a 2D array, 
 | |
| the fromarray function (or the implicit version shown above)
 | |
| returns a single-channel CvMat of the same size.
 | |
| For a 3D array of size :math:`j \times k \times l`, it returns a 
 | |
| CvMat sized :math:`j \times k` with :math:`l` channels.
 | |
| 
 | |
| Alternatively, use fromarray with the allowND option to always return a cvMatND.
 | 
