225 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2008, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "precomp.hpp"
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| struct KeypointResponseGreaterThanThreshold
 | |
| {
 | |
|     KeypointResponseGreaterThanThreshold(float _value) :
 | |
|     value(_value)
 | |
|     {
 | |
|     }
 | |
|     inline bool operator()(const KeyPoint& kpt) const
 | |
|     {
 | |
|         return kpt.response >= value;
 | |
|     }
 | |
|     float value;
 | |
| };
 | |
| 
 | |
| struct KeypointResponseGreater
 | |
| {
 | |
|     inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
 | |
|     {
 | |
|         return kp1.response > kp2.response;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // takes keypoints and culls them by the response
 | |
| void KeyPointsFilter::retainBest(std::vector<KeyPoint>& keypoints, int n_points)
 | |
| {
 | |
|     //this is only necessary if the keypoints size is greater than the number of desired points.
 | |
|     if( n_points >= 0 && keypoints.size() > (size_t)n_points )
 | |
|     {
 | |
|         if (n_points==0)
 | |
|         {
 | |
|             keypoints.clear();
 | |
|             return;
 | |
|         }
 | |
|         //first use nth element to partition the keypoints into the best and worst.
 | |
|         std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
 | |
|         //this is the boundary response, and in the case of FAST may be ambigous
 | |
|         float ambiguous_response = keypoints[n_points - 1].response;
 | |
|         //use std::partition to grab all of the keypoints with the boundary response.
 | |
|         std::vector<KeyPoint>::const_iterator new_end =
 | |
|         std::partition(keypoints.begin() + n_points, keypoints.end(),
 | |
|                        KeypointResponseGreaterThanThreshold(ambiguous_response));
 | |
|         //resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
 | |
|         keypoints.resize(new_end - keypoints.begin());
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct RoiPredicate
 | |
| {
 | |
|     RoiPredicate( const Rect& _r ) : r(_r)
 | |
|     {}
 | |
| 
 | |
|     bool operator()( const KeyPoint& keyPt ) const
 | |
|     {
 | |
|         return !r.contains( keyPt.pt );
 | |
|     }
 | |
| 
 | |
|     Rect r;
 | |
| };
 | |
| 
 | |
| void KeyPointsFilter::runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize )
 | |
| {
 | |
|     if( borderSize > 0)
 | |
|     {
 | |
|         if (imageSize.height <= borderSize * 2 || imageSize.width <= borderSize * 2)
 | |
|             keypoints.clear();
 | |
|         else
 | |
|             keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(),
 | |
|                                        RoiPredicate(Rect(Point(borderSize, borderSize),
 | |
|                                                          Point(imageSize.width - borderSize, imageSize.height - borderSize)))),
 | |
|                              keypoints.end() );
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct SizePredicate
 | |
| {
 | |
|     SizePredicate( float _minSize, float _maxSize ) : minSize(_minSize), maxSize(_maxSize)
 | |
|     {}
 | |
| 
 | |
|     bool operator()( const KeyPoint& keyPt ) const
 | |
|     {
 | |
|         float size = keyPt.size;
 | |
|         return (size < minSize) || (size > maxSize);
 | |
|     }
 | |
| 
 | |
|     float minSize, maxSize;
 | |
| };
 | |
| 
 | |
| void KeyPointsFilter::runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, float maxSize )
 | |
| {
 | |
|     CV_Assert( minSize >= 0 );
 | |
|     CV_Assert( maxSize >= 0);
 | |
|     CV_Assert( minSize <= maxSize );
 | |
| 
 | |
|     keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), SizePredicate(minSize, maxSize)),
 | |
|                      keypoints.end() );
 | |
| }
 | |
| 
 | |
| class MaskPredicate
 | |
| {
 | |
| public:
 | |
|     MaskPredicate( const Mat& _mask ) : mask(_mask) {}
 | |
|     bool operator() (const KeyPoint& key_pt) const
 | |
|     {
 | |
|         return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     const Mat mask;
 | |
|     MaskPredicate& operator=(const MaskPredicate&);
 | |
| };
 | |
| 
 | |
| void KeyPointsFilter::runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask )
 | |
| {
 | |
|     if( mask.empty() )
 | |
|         return;
 | |
| 
 | |
|     keypoints.erase(std::remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end());
 | |
| }
 | |
| 
 | |
| struct KeyPoint_LessThan
 | |
| {
 | |
|     KeyPoint_LessThan(const std::vector<KeyPoint>& _kp) : kp(&_kp) {}
 | |
|     bool operator()(int i, int j) const
 | |
|     {
 | |
|         const KeyPoint& kp1 = (*kp)[i];
 | |
|         const KeyPoint& kp2 = (*kp)[j];
 | |
|         if( kp1.pt.x != kp2.pt.x )
 | |
|             return kp1.pt.x < kp2.pt.x;
 | |
|         if( kp1.pt.y != kp2.pt.y )
 | |
|             return kp1.pt.y < kp2.pt.y;
 | |
|         if( kp1.size != kp2.size )
 | |
|             return kp1.size > kp2.size;
 | |
|         if( kp1.angle != kp2.angle )
 | |
|             return kp1.angle < kp2.angle;
 | |
|         if( kp1.response != kp2.response )
 | |
|             return kp1.response > kp2.response;
 | |
|         if( kp1.octave != kp2.octave )
 | |
|             return kp1.octave > kp2.octave;
 | |
|         if( kp1.class_id != kp2.class_id )
 | |
|             return kp1.class_id > kp2.class_id;
 | |
| 
 | |
|         return i < j;
 | |
|     }
 | |
|     const std::vector<KeyPoint>* kp;
 | |
| };
 | |
| 
 | |
| void KeyPointsFilter::removeDuplicated( std::vector<KeyPoint>& keypoints )
 | |
| {
 | |
|     int i, j, n = (int)keypoints.size();
 | |
|     std::vector<int> kpidx(n);
 | |
|     std::vector<uchar> mask(n, (uchar)1);
 | |
| 
 | |
|     for( i = 0; i < n; i++ )
 | |
|         kpidx[i] = i;
 | |
|     std::sort(kpidx.begin(), kpidx.end(), KeyPoint_LessThan(keypoints));
 | |
|     for( i = 1, j = 0; i < n; i++ )
 | |
|     {
 | |
|         KeyPoint& kp1 = keypoints[kpidx[i]];
 | |
|         KeyPoint& kp2 = keypoints[kpidx[j]];
 | |
|         if( kp1.pt.x != kp2.pt.x || kp1.pt.y != kp2.pt.y ||
 | |
|             kp1.size != kp2.size || kp1.angle != kp2.angle )
 | |
|             j = i;
 | |
|         else
 | |
|             mask[kpidx[i]] = 0;
 | |
|     }
 | |
| 
 | |
|     for( i = j = 0; i < n; i++ )
 | |
|     {
 | |
|         if( mask[i] )
 | |
|         {
 | |
|             if( i != j )
 | |
|                 keypoints[j] = keypoints[i];
 | |
|             j++;
 | |
|         }
 | |
|     }
 | |
|     keypoints.resize(j);
 | |
| }
 | |
| 
 | |
| }
 | 
