437 lines
13 KiB
C++

#include <cstdio>
#define HAVE_CUDA 1
#include <opencv2/core/core.hpp>
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/video.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <opencv2/ts/ts.hpp>
#include <opencv2/ts/ts_perf.hpp>
static void printOsInfo()
{
#if defined _WIN32
# if defined _WIN64
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"); fflush(stdout);
# else
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"); fflush(stdout);
# endif
#elif defined linux
# if defined _LP64
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"); fflush(stdout);
# else
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"); fflush(stdout);
# endif
#elif defined __APPLE__
# if defined _LP64
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"); fflush(stdout);
# else
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"); fflush(stdout);
# endif
#endif
}
static void printCudaInfo()
{
const int deviceCount = cv::gpu::getCudaEnabledDeviceCount();
printf("[----------]\n"); fflush(stdout);
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount); fflush(stdout);
printf("[----------]\n"); fflush(stdout);
for (int i = 0; i < deviceCount; ++i)
{
cv::gpu::DeviceInfo info(i);
printf("[----------]\n"); fflush(stdout);
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()); fflush(stdout);
printf("[ ] \tCompute capability: %d.%d\n", info.majorVersion(), info.minorVersion()); fflush(stdout);
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()); fflush(stdout);
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)); fflush(stdout);
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)); fflush(stdout);
if (!info.isCompatible())
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n");
printf("[----------]\n"); fflush(stdout);
}
}
int main(int argc, char* argv[])
{
printOsInfo();
printCudaInfo();
perf::Regression::Init("nv_perf_test");
perf::TestBase::Init(argc, argv);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
//////////////////////////////////////////////////////////
// HoughLinesP
DEF_PARAM_TEST_1(Image, std::string);
PERF_TEST_P(Image, HoughLinesP,
testing::Values(std::string("im1_1280x800.jpg")))
{
declare.time(30.0);
std::string fileName = GetParam();
const double rho = 1.0;
const double theta = 1.0;
const int threshold = 40;
const int minLineLenght = 20;
const int maxLineGap = 5;
cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_lines;
cv::gpu::CannyBuf d_buf;
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, minLineLenght, maxLineGap);
TEST_CYCLE()
{
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, minLineLenght, maxLineGap);
}
}
else
{
cv::Mat mask;
cv::Canny(image, mask, 50, 100);
std::vector<cv::Vec4i> lines;
cv::HoughLinesP(mask, lines, rho, theta, threshold, minLineLenght, maxLineGap);
TEST_CYCLE()
{
cv::HoughLinesP(mask, lines, rho, theta, threshold, minLineLenght, maxLineGap);
}
}
SANITY_CHECK(0);
}
//////////////////////////////////////////////////////////
// GoodFeaturesToTrack
DEF_PARAM_TEST(Image_Depth, std::string, perf::MatDepth);
PERF_TEST_P(Image_Depth, GoodFeaturesToTrack,
testing::Combine(
testing::Values(std::string("im1_1280x800.jpg")),
testing::Values(CV_8U, CV_16U)
))
{
declare.time(60);
const std::string fileName = std::tr1::get<0>(GetParam());
const int depth = std::tr1::get<1>(GetParam());
const int maxCorners = 5000;
const double qualityLevel = 0.05;
const int minDistance = 5;
const int blockSize = 3;
const bool useHarrisDetector = true;
const double k = 0.05;
cv::Mat src = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
if (src.empty())
FAIL() << "Unable to load source image [" << fileName << "]";
if (depth != CV_8U)
src.convertTo(src, depth);
cv::Mat mask(src.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Rect(0, 0, 100, 100)).setTo(cv::Scalar::all(0));
if (PERF_RUN_GPU())
{
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_pts;
d_detector(d_src, d_pts, d_mask);
TEST_CYCLE()
{
d_detector(d_src, d_pts, d_mask);
}
}
else
{
if (depth != CV_8U)
FAIL() << "Unsupported depth";
cv::Mat pts;
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k);
TEST_CYCLE()
{
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k);
}
}
SANITY_CHECK(0);
}
//////////////////////////////////////////////////////////
// OpticalFlowPyrLKSparse
typedef std::pair<std::string, std::string> string_pair;
DEF_PARAM_TEST(ImagePair_Depth_GraySource, string_pair, perf::MatDepth, bool);
PERF_TEST_P(ImagePair_Depth_GraySource, OpticalFlowPyrLKSparse,
testing::Combine(
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")),
testing::Values(CV_8U, CV_16U),
testing::Bool()
))
{
declare.time(60);
const string_pair fileNames = std::tr1::get<0>(GetParam());
const int depth = std::tr1::get<1>(GetParam());
const bool graySource = std::tr1::get<2>(GetParam());
// PyrLK params
const cv::Size winSize(15, 15);
const int maxLevel = 5;
const cv::TermCriteria criteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01);
// GoodFeaturesToTrack params
const int maxCorners = 5000;
const double qualityLevel = 0.05;
const int minDistance = 5;
const int blockSize = 3;
const bool useHarrisDetector = true;
const double k = 0.05;
cv::Mat src1 = cv::imread(fileNames.first, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
if (src1.empty())
FAIL() << "Unable to load source image [" << fileNames.first << "]";
cv::Mat src2 = cv::imread(fileNames.second, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
if (src2.empty())
FAIL() << "Unable to load source image [" << fileNames.second << "]";
cv::Mat gray_src;
if (graySource)
gray_src = src1;
else
cv::cvtColor(src1, gray_src, cv::COLOR_BGR2GRAY);
cv::Mat pts;
cv::goodFeaturesToTrack(gray_src, pts, maxCorners, qualityLevel, minDistance, cv::noArray(), blockSize, useHarrisDetector, k);
if (depth != CV_8U)
{
src1.convertTo(src1, depth);
src2.convertTo(src2, depth);
}
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src1(src1);
cv::gpu::GpuMat d_src2(src2);
cv::gpu::GpuMat d_pts(pts.reshape(2, 1));
cv::gpu::GpuMat d_nextPts;
cv::gpu::GpuMat d_status;
cv::gpu::PyrLKOpticalFlow d_pyrLK;
d_pyrLK.winSize = winSize;
d_pyrLK.maxLevel = maxLevel;
d_pyrLK.iters = criteria.maxCount;
d_pyrLK.useInitialFlow = false;
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status);
TEST_CYCLE()
{
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status);
}
}
else
{
if (depth != CV_8U)
FAIL() << "Unsupported depth";
cv::Mat nextPts;
cv::Mat status;
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria);
TEST_CYCLE()
{
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria);
}
}
SANITY_CHECK(0);
}
//////////////////////////////////////////////////////////
// OpticalFlowFarneback
DEF_PARAM_TEST(ImagePair_Depth, string_pair, perf::MatDepth);
PERF_TEST_P(ImagePair_Depth, OpticalFlowFarneback,
testing::Combine(
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")),
testing::Values(CV_8U, CV_16U)
))
{
declare.time(500);
const string_pair fileNames = std::tr1::get<0>(GetParam());
const int depth = std::tr1::get<1>(GetParam());
const double pyrScale = 0.5;
const int numLevels = 6;
const int winSize = 7;
const int numIters = 15;
const int polyN = 7;
const double polySigma = 1.5;
const int flags = cv::OPTFLOW_USE_INITIAL_FLOW;
cv::Mat src1 = cv::imread(fileNames.first, cv::IMREAD_GRAYSCALE);
if (src1.empty())
FAIL() << "Unable to load source image [" << fileNames.first << "]";
cv::Mat src2 = cv::imread(fileNames.second, cv::IMREAD_GRAYSCALE);
if (src2.empty())
FAIL() << "Unable to load source image [" << fileNames.second << "]";
if (depth != CV_8U)
{
src1.convertTo(src1, depth);
src2.convertTo(src2, depth);
}
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src1(src1);
cv::gpu::GpuMat d_src2(src2);
cv::gpu::GpuMat d_u(src1.size(), CV_32FC1, cv::Scalar::all(0));
cv::gpu::GpuMat d_v(src1.size(), CV_32FC1, cv::Scalar::all(0));
cv::gpu::FarnebackOpticalFlow d_farneback;
d_farneback.pyrScale = pyrScale;
d_farneback.numLevels = numLevels;
d_farneback.winSize = winSize;
d_farneback.numIters = numIters;
d_farneback.polyN = polyN;
d_farneback.polySigma = polySigma;
d_farneback.flags = flags;
d_farneback(d_src1, d_src2, d_u, d_v);
TEST_CYCLE_N(10)
{
d_farneback(d_src1, d_src2, d_u, d_v);
}
}
else
{
if (depth != CV_8U)
FAIL() << "Unsupported depth";
cv::Mat flow(src1.size(), CV_32FC2, cv::Scalar::all(0));
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
TEST_CYCLE_N(10)
{
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
}
}
SANITY_CHECK(0);
}
//////////////////////////////////////////////////////////
// OpticalFlowBM
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
cv::Mat& velx, cv::Mat& vely)
{
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
velx.create(sz, CV_32FC1);
vely.create(sz, CV_32FC1);
CvMat cvprev = prev;
CvMat cvcurr = curr;
CvMat cvvelx = velx;
CvMat cvvely = vely;
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
}
DEF_PARAM_TEST(ImagePair_BlockSize_ShiftSize_MaxRange, string_pair, cv::Size, cv::Size, cv::Size);
PERF_TEST_P(ImagePair_BlockSize_ShiftSize_MaxRange, OpticalFlowBM,
testing::Combine(
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")),
testing::Values(cv::Size(16, 16)),
testing::Values(cv::Size(2, 2)),
testing::Values(cv::Size(16, 16))
))
{
declare.time(1000);
const string_pair fileNames = std::tr1::get<0>(GetParam());
const cv::Size block_size = std::tr1::get<1>(GetParam());
const cv::Size shift_size = std::tr1::get<2>(GetParam());
const cv::Size max_range = std::tr1::get<3>(GetParam());
cv::Mat src1 = cv::imread(fileNames.first, cv::IMREAD_GRAYSCALE);
if (src1.empty())
FAIL() << "Unable to load source image [" << fileNames.first << "]";
cv::Mat src2 = cv::imread(fileNames.second, cv::IMREAD_GRAYSCALE);
if (src2.empty())
FAIL() << "Unable to load source image [" << fileNames.second << "]";
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_src1(src1);
cv::gpu::GpuMat d_src2(src2);
cv::gpu::GpuMat d_velx, d_vely, buf;
cv::gpu::calcOpticalFlowBM(d_src1, d_src2, block_size, shift_size, max_range, false, d_velx, d_vely, buf);
TEST_CYCLE_N(10)
{
cv::gpu::calcOpticalFlowBM(d_src1, d_src2, block_size, shift_size, max_range, false, d_velx, d_vely, buf);
}
}
else
{
cv::Mat velx, vely;
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely);
TEST_CYCLE_N(10)
{
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely);
}
}
SANITY_CHECK(0);
}