109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Jin Ma, jin@multicorewareinc.com
 | 
						|
//    Xiaopeng Fu, fuxiaopeng2222@163.com
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors as is and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
#include "perf_precomp.hpp"
 | 
						|
using namespace perf;
 | 
						|
using namespace std;
 | 
						|
using namespace cv::ocl;
 | 
						|
using namespace cv;
 | 
						|
using std::tr1::tuple;
 | 
						|
using std::tr1::get;
 | 
						|
////////////////////////////////// K-NEAREST NEIGHBOR ////////////////////////////////////
 | 
						|
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
 | 
						|
{
 | 
						|
    trainData.create(size, CV_32FC1);
 | 
						|
    randu(trainData, 1.0, 100.0);
 | 
						|
 | 
						|
    if(nClasses != 0)
 | 
						|
    {
 | 
						|
        trainLabel.create(size.height, 1, CV_8UC1);
 | 
						|
        randu(trainLabel, 0, nClasses - 1);
 | 
						|
        trainLabel.convertTo(trainLabel, CV_32FC1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef tuple<int> KNNParamType;
 | 
						|
typedef TestBaseWithParam<KNNParamType> KNNFixture;
 | 
						|
 | 
						|
PERF_TEST_P(KNNFixture, KNN,
 | 
						|
            testing::Values(1000, 2000, 4000))
 | 
						|
{
 | 
						|
    KNNParamType params = GetParam();
 | 
						|
    const int rows = get<0>(params);
 | 
						|
    int columns = 100;
 | 
						|
    int k = rows/250;
 | 
						|
 | 
						|
    Mat trainData, trainLabels;
 | 
						|
    Size size(columns, rows);
 | 
						|
    genData(trainData, size, trainLabels, 3);
 | 
						|
 | 
						|
    Mat testData;
 | 
						|
    genData(testData, size);
 | 
						|
    Mat best_label;
 | 
						|
 | 
						|
    if(RUN_PLAIN_IMPL)
 | 
						|
    {
 | 
						|
        TEST_CYCLE()
 | 
						|
        {
 | 
						|
            CvKNearest knn_cpu;
 | 
						|
            knn_cpu.train(trainData, trainLabels);
 | 
						|
            knn_cpu.find_nearest(testData, k, &best_label);
 | 
						|
        }
 | 
						|
    }else if(RUN_OCL_IMPL)
 | 
						|
    {
 | 
						|
        cv::ocl::oclMat best_label_ocl;
 | 
						|
        cv::ocl::oclMat testdata;
 | 
						|
        testdata.upload(testData);
 | 
						|
 | 
						|
        OCL_TEST_CYCLE()
 | 
						|
        {
 | 
						|
            cv::ocl::KNearestNeighbour knn_ocl;
 | 
						|
            knn_ocl.train(trainData, trainLabels);
 | 
						|
            knn_ocl.find_nearest(testdata, k, best_label_ocl);
 | 
						|
        }
 | 
						|
        best_label_ocl.download(best_label);
 | 
						|
    }else
 | 
						|
        OCL_PERF_ELSE
 | 
						|
    SANITY_CHECK(best_label);
 | 
						|
} |