171 lines
6.8 KiB
ReStructuredText
171 lines
6.8 KiB
ReStructuredText
K Nearest Neighbors
|
|
===================
|
|
|
|
The algorithm caches all training samples and predicts the response for a new sample by analyzing a certain number (
|
|
**K**
|
|
) of the nearest neighbors of the sample (using voting, calculating weighted sum, and so on). The method is sometimes referred to as "learning by example" because for prediction it looks for the feature vector with a known response that is closest to the given vector.
|
|
|
|
.. index:: CvKNearest
|
|
|
|
.. _CvKNearest:
|
|
|
|
CvKNearest
|
|
----------
|
|
.. c:type:: CvKNearest
|
|
|
|
K-Nearest Neighbors model ::
|
|
|
|
class CvKNearest : public CvStatModel
|
|
{
|
|
public:
|
|
|
|
CvKNearest();
|
|
virtual ~CvKNearest();
|
|
|
|
CvKNearest( const CvMat* _train_data, const CvMat* _responses,
|
|
const CvMat* _sample_idx=0, bool _is_regression=false, int max_k=32 );
|
|
|
|
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
|
|
const CvMat* _sample_idx=0, bool is_regression=false,
|
|
int _max_k=32, bool _update_base=false );
|
|
|
|
virtual float find_nearest( const CvMat* _samples, int k, CvMat* results,
|
|
const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const;
|
|
|
|
virtual void clear();
|
|
int get_max_k() const;
|
|
int get_var_count() const;
|
|
int get_sample_count() const;
|
|
bool is_regression() const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: CvKNearest::train
|
|
|
|
.. _CvKNearest::train:
|
|
|
|
CvKNearest::train
|
|
-----------------
|
|
.. cpp:function:: bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _sample_idx=0, bool is_regression=false, int _max_k=32, bool _update_base=false )
|
|
|
|
Trains the model.
|
|
|
|
The method trains the K-Nearest model. It follows the conventions of the generic ``train`` "method" with the following limitations:
|
|
* Only ``CV_ROW_SAMPLE`` data layout is supported.
|
|
* Input variables are all ordered.
|
|
* Output variables can be either categorical ( ``is_regression=false`` ) or ordered ( ``is_regression=true`` ).
|
|
* Variable subsets ( ``var_idx`` ) and missing measurements are not supported.
|
|
|
|
The parameter ``_max_k`` specifies the number of maximum neighbors that may be passed to the method ``find_nearest`` .
|
|
|
|
The parameter ``_update_base`` specifies whether the model is trained from scratch
|
|
( ``_update_base=false`` ), or it is updated using the new training data ( ``_update_base=true`` ). In the latter case, the parameter ``_max_k`` must not be larger than the original value.
|
|
|
|
.. index:: CvKNearest::find_nearest
|
|
|
|
.. _CvKNearest::find_nearest:
|
|
|
|
CvKNearest::find_nearest
|
|
------------------------
|
|
.. cpp:function:: float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* results=0, const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const
|
|
|
|
Finds the neighbors for input vectors.
|
|
|
|
For each input vector (a row of the matrix ``_samples`` ), the method finds the
|
|
:math:`\texttt{k} \le
|
|
\texttt{get\_max\_k()}` nearest neighbor. In case of regression,
|
|
the predicted result is a mean value of the particular vector's
|
|
neighbor responses. In case of classification, the class is determined
|
|
by voting.
|
|
|
|
For a custom classification/regression prediction, the method can optionally return pointers to the neighbor vectors themselves ( ``neighbors`` , an array of ``k*_samples->rows`` pointers), their corresponding output values ( ``neighbor_responses`` , a vector of ``k*_samples->rows`` elements), and the distances from the input vectors to the neighbors ( ``dist`` , also a vector of ``k*_samples->rows`` elements).
|
|
|
|
For each input vector, the neighbors are sorted by their distances to the vector.
|
|
|
|
If only a single input vector is passed, all output matrices are optional and the predicted value is returned by the method. ::
|
|
|
|
#include "ml.h"
|
|
#include "highgui.h"
|
|
|
|
int main( int argc, char** argv )
|
|
{
|
|
const int K = 10;
|
|
int i, j, k, accuracy;
|
|
float response;
|
|
int train_sample_count = 100;
|
|
CvRNG rng_state = cvRNG(-1);
|
|
CvMat* trainData = cvCreateMat( train_sample_count, 2, CV_32FC1 );
|
|
CvMat* trainClasses = cvCreateMat( train_sample_count, 1, CV_32FC1 );
|
|
IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
|
|
float _sample[2];
|
|
CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
|
|
cvZero( img );
|
|
|
|
CvMat trainData1, trainData2, trainClasses1, trainClasses2;
|
|
|
|
// form the training samples
|
|
cvGetRows( trainData, &trainData1, 0, train_sample_count/2 );
|
|
cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(200,200), cvScalar(50,50) );
|
|
|
|
cvGetRows( trainData, &trainData2, train_sample_count/2, train_sample_count );
|
|
cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(300,300), cvScalar(50,50) );
|
|
|
|
cvGetRows( trainClasses, &trainClasses1, 0, train_sample_count/2 );
|
|
cvSet( &trainClasses1, cvScalar(1) );
|
|
|
|
cvGetRows( trainClasses, &trainClasses2, train_sample_count/2, train_sample_count );
|
|
cvSet( &trainClasses2, cvScalar(2) );
|
|
|
|
// learn classifier
|
|
CvKNearest knn( trainData, trainClasses, 0, false, K );
|
|
CvMat* nearests = cvCreateMat( 1, K, CV_32FC1);
|
|
|
|
for( i = 0; i < img->height; i++ )
|
|
{
|
|
for( j = 0; j < img->width; j++ )
|
|
{
|
|
sample.data.fl[0] = (float)j;
|
|
sample.data.fl[1] = (float)i;
|
|
|
|
// estimate the response and get the neighbors' labels
|
|
response = knn.find_nearest(&sample,K,0,0,nearests,0);
|
|
|
|
// compute the number of neighbors representing the majority
|
|
for( k = 0, accuracy = 0; k < K; k++ )
|
|
{
|
|
if( nearests->data.fl[k] == response)
|
|
accuracy++;
|
|
}
|
|
// highlight the pixel depending on the accuracy (or confidence)
|
|
cvSet2D( img, i, j, response == 1 ?
|
|
(accuracy > 5 ? CV_RGB(180,0,0) : CV_RGB(180,120,0)) :
|
|
(accuracy > 5 ? CV_RGB(0,180,0) : CV_RGB(120,120,0)) );
|
|
}
|
|
}
|
|
|
|
// display the original training samples
|
|
for( i = 0; i < train_sample_count/2; i++ )
|
|
{
|
|
CvPoint pt;
|
|
pt.x = cvRound(trainData1.data.fl[i*2]);
|
|
pt.y = cvRound(trainData1.data.fl[i*2+1]);
|
|
cvCircle( img, pt, 2, CV_RGB(255,0,0), CV_FILLED );
|
|
pt.x = cvRound(trainData2.data.fl[i*2]);
|
|
pt.y = cvRound(trainData2.data.fl[i*2+1]);
|
|
cvCircle( img, pt, 2, CV_RGB(0,255,0), CV_FILLED );
|
|
}
|
|
|
|
cvNamedWindow( "classifier result", 1 );
|
|
cvShowImage( "classifier result", img );
|
|
cvWaitKey(0);
|
|
|
|
cvReleaseMat( &trainClasses );
|
|
cvReleaseMat( &trainData );
|
|
return 0;
|
|
}
|
|
|
|
|