271 lines
7.8 KiB
ReStructuredText
271 lines
7.8 KiB
ReStructuredText
Feature detection and description
|
|
=================================
|
|
|
|
.. highlight:: c
|
|
|
|
|
|
|
|
|
|
|
|
* **image** The image. Keypoints (corners) will be detected on this.
|
|
|
|
|
|
* **keypoints** Keypoints detected on the image.
|
|
|
|
|
|
* **threshold** Threshold on difference between intensity of center pixel and
|
|
pixels on circle around this pixel. See description of the algorithm.
|
|
|
|
|
|
* **nonmaxSupression** If it is true then non-maximum supression will be applied to detected corners (keypoints).
|
|
|
|
|
|
|
|
|
|
.. index:: ExtractSURF
|
|
|
|
.. _ExtractSURF:
|
|
|
|
ExtractSURF
|
|
-----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. cfunction:: void cvExtractSURF( const CvArr* image, const CvArr* mask, CvSeq** keypoints, CvSeq** descriptors, CvMemStorage* storage, CvSURFParams params )
|
|
|
|
Extracts Speeded Up Robust Features from an image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:param image: The input 8-bit grayscale image
|
|
|
|
|
|
:param mask: The optional input 8-bit mask. The features are only found in the areas that contain more than 50 % of non-zero mask pixels
|
|
|
|
|
|
:param keypoints: The output parameter; double pointer to the sequence of keypoints. The sequence of CvSURFPoint structures is as follows:
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
typedef struct CvSURFPoint
|
|
{
|
|
CvPoint2D32f pt; // position of the feature within the image
|
|
int laplacian; // -1, 0 or +1. sign of the laplacian at the point.
|
|
// can be used to speedup feature comparison
|
|
// (normally features with laplacians of different
|
|
// signs can not match)
|
|
int size; // size of the feature
|
|
float dir; // orientation of the feature: 0..360 degrees
|
|
float hessian; // value of the hessian (can be used to
|
|
// approximately estimate the feature strengths;
|
|
// see also params.hessianThreshold)
|
|
}
|
|
CvSURFPoint;
|
|
|
|
|
|
..
|
|
|
|
|
|
:param descriptors: The optional output parameter; double pointer to the sequence of descriptors. Depending on the params.extended value, each element of the sequence will be either a 64-element or a 128-element floating-point ( ``CV_32F`` ) vector. If the parameter is NULL, the descriptors are not computed
|
|
|
|
|
|
:param storage: Memory storage where keypoints and descriptors will be stored
|
|
|
|
|
|
:param params: Various algorithm parameters put to the structure CvSURFParams:
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
typedef struct CvSURFParams
|
|
{
|
|
int extended; // 0 means basic descriptors (64 elements each),
|
|
// 1 means extended descriptors (128 elements each)
|
|
double hessianThreshold; // only features with keypoint.hessian
|
|
// larger than that are extracted.
|
|
// good default value is ~300-500 (can depend on the
|
|
// average local contrast and sharpness of the image).
|
|
// user can further filter out some features based on
|
|
// their hessian values and other characteristics.
|
|
int nOctaves; // the number of octaves to be used for extraction.
|
|
// With each next octave the feature size is doubled
|
|
// (3 by default)
|
|
int nOctaveLayers; // The number of layers within each octave
|
|
// (4 by default)
|
|
}
|
|
CvSURFParams;
|
|
|
|
CvSURFParams cvSURFParams(double hessianThreshold, int extended=0);
|
|
// returns default parameters
|
|
|
|
|
|
..
|
|
|
|
|
|
|
|
The function cvExtractSURF finds robust features in the image, as
|
|
described in
|
|
Bay06
|
|
. For each feature it returns its location, size,
|
|
orientation and optionally the descriptor, basic or extended. The function
|
|
can be used for object tracking and localization, image stitching etc.
|
|
|
|
See the
|
|
``find_obj.cpp``
|
|
demo in OpenCV samples directory.
|
|
|
|
.. index:: GetStarKeypoints
|
|
|
|
.. _GetStarKeypoints:
|
|
|
|
GetStarKeypoints
|
|
----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. cfunction:: CvSeq* cvGetStarKeypoints( const CvArr* image, CvMemStorage* storage, CvStarDetectorParams params=cvStarDetectorParams() )
|
|
|
|
Retrieves keypoints using the StarDetector algorithm.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:param image: The input 8-bit grayscale image
|
|
|
|
|
|
:param storage: Memory storage where the keypoints will be stored
|
|
|
|
|
|
:param params: Various algorithm parameters given to the structure CvStarDetectorParams:
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
typedef struct CvStarDetectorParams
|
|
{
|
|
int maxSize; // maximal size of the features detected. The following
|
|
// values of the parameter are supported:
|
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
|
int responseThreshold; // threshold for the approximatd laplacian,
|
|
// used to eliminate weak features
|
|
int lineThresholdProjected; // another threshold for laplacian to
|
|
// eliminate edges
|
|
int lineThresholdBinarized; // another threshold for the feature
|
|
// scale to eliminate edges
|
|
int suppressNonmaxSize; // linear size of a pixel neighborhood
|
|
// for non-maxima suppression
|
|
}
|
|
CvStarDetectorParams;
|
|
|
|
|
|
..
|
|
|
|
|
|
|
|
The function GetStarKeypoints extracts keypoints that are local
|
|
scale-space extremas. The scale-space is constructed by computing
|
|
approximate values of laplacians with different sigma's at each
|
|
pixel. Instead of using pyramids, a popular approach to save computing
|
|
time, all of the laplacians are computed at each pixel of the original
|
|
high-resolution image. But each approximate laplacian value is computed
|
|
in O(1) time regardless of the sigma, thanks to the use of integral
|
|
images. The algorithm is based on the paper
|
|
Agrawal08
|
|
, but instead
|
|
of a square, hexagon or octagon it uses an 8-end star shape, hence the name,
|
|
consisting of overlapping upright and tilted squares.
|
|
|
|
Each computed feature is represented by the following structure:
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
typedef struct CvStarKeypoint
|
|
{
|
|
CvPoint pt; // coordinates of the feature
|
|
int size; // feature size, see CvStarDetectorParams::maxSize
|
|
float response; // the approximated laplacian value at that point.
|
|
}
|
|
CvStarKeypoint;
|
|
|
|
inline CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response);
|
|
|
|
|
|
..
|
|
|
|
Below is the small usage sample:
|
|
|
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
#include "cv.h"
|
|
#include "highgui.h"
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const char* filename = argc > 1 ? argv[1] : "lena.jpg";
|
|
IplImage* img = cvLoadImage( filename, 0 ), *cimg;
|
|
CvMemStorage* storage = cvCreateMemStorage(0);
|
|
CvSeq* keypoints = 0;
|
|
int i;
|
|
|
|
if( !img )
|
|
return 0;
|
|
cvNamedWindow( "image", 1 );
|
|
cvShowImage( "image", img );
|
|
cvNamedWindow( "features", 1 );
|
|
cimg = cvCreateImage( cvGetSize(img), 8, 3 );
|
|
cvCvtColor( img, cimg, CV_GRAY2BGR );
|
|
|
|
keypoints = cvGetStarKeypoints( img, storage, cvStarDetectorParams(45) );
|
|
|
|
for( i = 0; i < (keypoints ? keypoints->total : 0); i++ )
|
|
{
|
|
CvStarKeypoint kpt = *(CvStarKeypoint*)cvGetSeqElem(keypoints, i);
|
|
int r = kpt.size/2;
|
|
cvCircle( cimg, kpt.pt, r, CV_RGB(0,255,0));
|
|
cvLine( cimg, cvPoint(kpt.pt.x + r, kpt.pt.y + r),
|
|
cvPoint(kpt.pt.x - r, kpt.pt.y - r), CV_RGB(0,255,0));
|
|
cvLine( cimg, cvPoint(kpt.pt.x - r, kpt.pt.y + r),
|
|
cvPoint(kpt.pt.x + r, kpt.pt.y - r), CV_RGB(0,255,0));
|
|
}
|
|
cvShowImage( "features", cimg );
|
|
cvWaitKey();
|
|
}
|
|
|
|
|
|
..
|
|
|