515 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2012 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Use of this source code is governed by a BSD-style license
 | |
| // that can be found in the COPYING file in the root of the source
 | |
| // tree. An additional intellectual property rights grant can be found
 | |
| // in the file PATENTS. All contributing project authors may
 | |
| // be found in the AUTHORS file in the root of the source tree.
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Author: Jyrki Alakuijala (jyrki@google.com)
 | |
| //
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "./backward_references.h"
 | |
| #include "./histogram.h"
 | |
| #include "../dsp/lossless.h"
 | |
| #include "../utils/utils.h"
 | |
| 
 | |
| static void HistogramClear(VP8LHistogram* const p) {
 | |
|   memset(p->literal_, 0, sizeof(p->literal_));
 | |
|   memset(p->red_, 0, sizeof(p->red_));
 | |
|   memset(p->blue_, 0, sizeof(p->blue_));
 | |
|   memset(p->alpha_, 0, sizeof(p->alpha_));
 | |
|   memset(p->distance_, 0, sizeof(p->distance_));
 | |
|   p->bit_cost_ = 0;
 | |
| }
 | |
| 
 | |
| void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
 | |
|                             VP8LHistogram* const histo) {
 | |
|   int i;
 | |
|   for (i = 0; i < refs->size; ++i) {
 | |
|     VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VP8LHistogramCreate(VP8LHistogram* const p,
 | |
|                          const VP8LBackwardRefs* const refs,
 | |
|                          int palette_code_bits) {
 | |
|   if (palette_code_bits >= 0) {
 | |
|     p->palette_code_bits_ = palette_code_bits;
 | |
|   }
 | |
|   HistogramClear(p);
 | |
|   VP8LHistogramStoreRefs(refs, p);
 | |
| }
 | |
| 
 | |
| void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
 | |
|   p->palette_code_bits_ = palette_code_bits;
 | |
|   HistogramClear(p);
 | |
| }
 | |
| 
 | |
| VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
 | |
|   int i;
 | |
|   VP8LHistogramSet* set;
 | |
|   VP8LHistogram* bulk;
 | |
|   const uint64_t total_size = sizeof(*set)
 | |
|                             + (uint64_t)size * sizeof(*set->histograms)
 | |
|                             + (uint64_t)size * sizeof(**set->histograms);
 | |
|   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
 | |
|   if (memory == NULL) return NULL;
 | |
| 
 | |
|   set = (VP8LHistogramSet*)memory;
 | |
|   memory += sizeof(*set);
 | |
|   set->histograms = (VP8LHistogram**)memory;
 | |
|   memory += size * sizeof(*set->histograms);
 | |
|   bulk = (VP8LHistogram*)memory;
 | |
|   set->max_size = size;
 | |
|   set->size = size;
 | |
|   for (i = 0; i < size; ++i) {
 | |
|     set->histograms[i] = bulk + i;
 | |
|     VP8LHistogramInit(set->histograms[i], cache_bits);
 | |
|   }
 | |
|   return set;
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
 | |
|                                      const PixOrCopy* const v) {
 | |
|   if (PixOrCopyIsLiteral(v)) {
 | |
|     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
 | |
|     ++histo->red_[PixOrCopyLiteral(v, 2)];
 | |
|     ++histo->literal_[PixOrCopyLiteral(v, 1)];
 | |
|     ++histo->blue_[PixOrCopyLiteral(v, 0)];
 | |
|   } else if (PixOrCopyIsCacheIdx(v)) {
 | |
|     int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
 | |
|     ++histo->literal_[literal_ix];
 | |
|   } else {
 | |
|     int code, extra_bits_count, extra_bits_value;
 | |
|     PrefixEncode(PixOrCopyLength(v),
 | |
|                  &code, &extra_bits_count, &extra_bits_value);
 | |
|     ++histo->literal_[256 + code];
 | |
|     PrefixEncode(PixOrCopyDistance(v),
 | |
|                  &code, &extra_bits_count, &extra_bits_value);
 | |
|     ++histo->distance_[code];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static double BitsEntropy(const int* const array, int n) {
 | |
|   double retval = 0.;
 | |
|   int sum = 0;
 | |
|   int nonzeros = 0;
 | |
|   int max_val = 0;
 | |
|   int i;
 | |
|   double mix;
 | |
|   for (i = 0; i < n; ++i) {
 | |
|     if (array[i] != 0) {
 | |
|       sum += array[i];
 | |
|       ++nonzeros;
 | |
|       retval -= VP8LFastSLog2(array[i]);
 | |
|       if (max_val < array[i]) {
 | |
|         max_val = array[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   retval += VP8LFastSLog2(sum);
 | |
| 
 | |
|   if (nonzeros < 5) {
 | |
|     if (nonzeros <= 1) {
 | |
|       return 0;
 | |
|     }
 | |
|     // Two symbols, they will be 0 and 1 in a Huffman code.
 | |
|     // Let's mix in a bit of entropy to favor good clustering when
 | |
|     // distributions of these are combined.
 | |
|     if (nonzeros == 2) {
 | |
|       return 0.99 * sum + 0.01 * retval;
 | |
|     }
 | |
|     // No matter what the entropy says, we cannot be better than min_limit
 | |
|     // with Huffman coding. I am mixing a bit of entropy into the
 | |
|     // min_limit since it produces much better (~0.5 %) compression results
 | |
|     // perhaps because of better entropy clustering.
 | |
|     if (nonzeros == 3) {
 | |
|       mix = 0.95;
 | |
|     } else {
 | |
|       mix = 0.7;  // nonzeros == 4.
 | |
|     }
 | |
|   } else {
 | |
|     mix = 0.627;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     double min_limit = 2 * sum - max_val;
 | |
|     min_limit = mix * min_limit + (1.0 - mix) * retval;
 | |
|     return (retval < min_limit) ? min_limit : retval;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns the cost encode the rle-encoded entropy code.
 | |
| // The constants in this function are experimental.
 | |
| static double HuffmanCost(const int* const population, int length) {
 | |
|   // Small bias because Huffman code length is typically not stored in
 | |
|   // full length.
 | |
|   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
 | |
|   static const double kSmallBias = 9.1;
 | |
|   double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
 | |
|   int streak = 0;
 | |
|   int i = 0;
 | |
|   for (; i < length - 1; ++i) {
 | |
|     ++streak;
 | |
|     if (population[i] == population[i + 1]) {
 | |
|       continue;
 | |
|     }
 | |
|  last_streak_hack:
 | |
|     // population[i] points now to the symbol in the streak of same values.
 | |
|     if (streak > 3) {
 | |
|       if (population[i] == 0) {
 | |
|         retval += 1.5625 + 0.234375 * streak;
 | |
|       } else {
 | |
|         retval += 2.578125 + 0.703125 * streak;
 | |
|       }
 | |
|     } else {
 | |
|       if (population[i] == 0) {
 | |
|         retval += 1.796875 * streak;
 | |
|       } else {
 | |
|         retval += 3.28125 * streak;
 | |
|       }
 | |
|     }
 | |
|     streak = 0;
 | |
|   }
 | |
|   if (i == length - 1) {
 | |
|     ++streak;
 | |
|     goto last_streak_hack;
 | |
|   }
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| static double PopulationCost(const int* const population, int length) {
 | |
|   return BitsEntropy(population, length) + HuffmanCost(population, length);
 | |
| }
 | |
| 
 | |
| static double ExtraCost(const int* const population, int length) {
 | |
|   int i;
 | |
|   double cost = 0.;
 | |
|   for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
 | |
|   return cost;
 | |
| }
 | |
| 
 | |
| // Estimates the Entropy + Huffman + other block overhead size cost.
 | |
| double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
 | |
|   return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
 | |
|        + PopulationCost(p->red_, 256)
 | |
|        + PopulationCost(p->blue_, 256)
 | |
|        + PopulationCost(p->alpha_, 256)
 | |
|        + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
 | |
|        + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
 | |
|        + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
 | |
| }
 | |
| 
 | |
| double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
 | |
|   return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
 | |
|        + BitsEntropy(p->red_, 256)
 | |
|        + BitsEntropy(p->blue_, 256)
 | |
|        + BitsEntropy(p->alpha_, 256)
 | |
|        + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
 | |
|        + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
 | |
|        + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Various histogram combine/cost-eval functions
 | |
| 
 | |
| // Adds 'in' histogram to 'out'
 | |
| static void HistogramAdd(const VP8LHistogram* const in,
 | |
|                          VP8LHistogram* const out) {
 | |
|   int i;
 | |
|   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
 | |
|     out->literal_[i] += in->literal_[i];
 | |
|   }
 | |
|   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
 | |
|     out->distance_[i] += in->distance_[i];
 | |
|   }
 | |
|   for (i = 0; i < 256; ++i) {
 | |
|     out->red_[i] += in->red_[i];
 | |
|     out->blue_[i] += in->blue_[i];
 | |
|     out->alpha_[i] += in->alpha_[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
 | |
| // to the threshold value 'cost_threshold'. The score returned is
 | |
| //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
 | |
| // Since the previous score passed is 'cost_threshold', we only need to compare
 | |
| // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
 | |
| // early.
 | |
| static double HistogramAddEval(const VP8LHistogram* const a,
 | |
|                                const VP8LHistogram* const b,
 | |
|                                VP8LHistogram* const out,
 | |
|                                double cost_threshold) {
 | |
|   double cost = 0;
 | |
|   const double sum_cost = a->bit_cost_ + b->bit_cost_;
 | |
|   int i;
 | |
| 
 | |
|   cost_threshold += sum_cost;
 | |
| 
 | |
|   // palette_code_bits_ is part of the cost evaluation for literal_.
 | |
|   // TODO(skal): remove/simplify this palette_code_bits_?
 | |
|   out->palette_code_bits_ =
 | |
|       (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
 | |
|                                                         b->palette_code_bits_;
 | |
|   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
 | |
|     out->literal_[i] = a->literal_[i] + b->literal_[i];
 | |
|   }
 | |
|   cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
 | |
|   cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
 | |
|   cost += PopulationCost(out->red_, 256);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
 | |
|   cost += PopulationCost(out->blue_, 256);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
 | |
|     out->distance_[i] = a->distance_[i] + b->distance_[i];
 | |
|   }
 | |
|   cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
 | |
|   cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
 | |
|   cost += PopulationCost(out->alpha_, 256);
 | |
| 
 | |
|   out->bit_cost_ = cost;
 | |
|   return cost - sum_cost;
 | |
| }
 | |
| 
 | |
| // Same as HistogramAddEval(), except that the resulting histogram
 | |
| // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
 | |
| // the term C(b) which is constant over all the evaluations.
 | |
| static double HistogramAddThresh(const VP8LHistogram* const a,
 | |
|                                  const VP8LHistogram* const b,
 | |
|                                  double cost_threshold) {
 | |
|   int tmp[PIX_OR_COPY_CODES_MAX];  // <= max storage we'll need
 | |
|   int i;
 | |
|   double cost = -a->bit_cost_;
 | |
| 
 | |
|   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
 | |
|     tmp[i] = a->literal_[i] + b->literal_[i];
 | |
|   }
 | |
|   // note that the tests are ordered so that the usually largest
 | |
|   // cost shares come first.
 | |
|   cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
 | |
|   cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
 | |
|   cost += PopulationCost(tmp, 256);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
 | |
|   cost += PopulationCost(tmp, 256);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
 | |
|     tmp[i] = a->distance_[i] + b->distance_[i];
 | |
|   }
 | |
|   cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
 | |
|   cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
 | |
|   if (cost > cost_threshold) return cost;
 | |
| 
 | |
|   for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
 | |
|   cost += PopulationCost(tmp, 256);
 | |
| 
 | |
|   return cost;
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| static void HistogramBuildImage(int xsize, int histo_bits,
 | |
|                                 const VP8LBackwardRefs* const backward_refs,
 | |
|                                 VP8LHistogramSet* const image) {
 | |
|   int i;
 | |
|   int x = 0, y = 0;
 | |
|   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
 | |
|   VP8LHistogram** const histograms = image->histograms;
 | |
|   assert(histo_bits > 0);
 | |
|   for (i = 0; i < backward_refs->size; ++i) {
 | |
|     const PixOrCopy* const v = &backward_refs->refs[i];
 | |
|     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
 | |
|     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
 | |
|     x += PixOrCopyLength(v);
 | |
|     while (x >= xsize) {
 | |
|       x -= xsize;
 | |
|       ++y;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint32_t MyRand(uint32_t *seed) {
 | |
|   *seed *= 16807U;
 | |
|   if (*seed == 0) {
 | |
|     *seed = 1;
 | |
|   }
 | |
|   return *seed;
 | |
| }
 | |
| 
 | |
| static int HistogramCombine(const VP8LHistogramSet* const in,
 | |
|                             VP8LHistogramSet* const out, int iter_mult,
 | |
|                             int num_pairs, int num_tries_no_success) {
 | |
|   int ok = 0;
 | |
|   int i, iter;
 | |
|   uint32_t seed = 0;
 | |
|   int tries_with_no_success = 0;
 | |
|   int out_size = in->size;
 | |
|   const int outer_iters = in->size * iter_mult;
 | |
|   const int min_cluster_size = 2;
 | |
|   VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
 | |
|   VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
 | |
|   VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
 | |
|   if (histos == NULL) goto End;
 | |
| 
 | |
|   // Copy histograms from in[] to out[].
 | |
|   assert(in->size <= out->size);
 | |
|   for (i = 0; i < in->size; ++i) {
 | |
|     in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
 | |
|     *out->histograms[i] = *in->histograms[i];
 | |
|   }
 | |
| 
 | |
|   // Collapse similar histograms in 'out'.
 | |
|   for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
 | |
|     double best_cost_diff = 0.;
 | |
|     int best_idx1 = -1, best_idx2 = 1;
 | |
|     int j;
 | |
|     const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
 | |
|     seed += iter;
 | |
|     for (j = 0; j < num_tries; ++j) {
 | |
|       double curr_cost_diff;
 | |
|       // Choose two histograms at random and try to combine them.
 | |
|       const uint32_t idx1 = MyRand(&seed) % out_size;
 | |
|       const uint32_t tmp = (j & 7) + 1;
 | |
|       const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
 | |
|       const uint32_t idx2 = (idx1 + diff + 1) % out_size;
 | |
|       if (idx1 == idx2) {
 | |
|         continue;
 | |
|       }
 | |
|       // Calculate cost reduction on combining.
 | |
|       curr_cost_diff = HistogramAddEval(out->histograms[idx1],
 | |
|                                         out->histograms[idx2],
 | |
|                                         cur_combo, best_cost_diff);
 | |
|       if (curr_cost_diff < best_cost_diff) {    // found a better pair?
 | |
|         {     // swap cur/best combo histograms
 | |
|           VP8LHistogram* const tmp_histo = cur_combo;
 | |
|           cur_combo = best_combo;
 | |
|           best_combo = tmp_histo;
 | |
|         }
 | |
|         best_cost_diff = curr_cost_diff;
 | |
|         best_idx1 = idx1;
 | |
|         best_idx2 = idx2;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (best_idx1 >= 0) {
 | |
|       *out->histograms[best_idx1] = *best_combo;
 | |
|       // swap best_idx2 slot with last one (which is now unused)
 | |
|       --out_size;
 | |
|       if (best_idx2 != out_size) {
 | |
|         out->histograms[best_idx2] = out->histograms[out_size];
 | |
|         out->histograms[out_size] = NULL;   // just for sanity check.
 | |
|       }
 | |
|       tries_with_no_success = 0;
 | |
|     }
 | |
|     if (++tries_with_no_success >= num_tries_no_success) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   out->size = out_size;
 | |
|   ok = 1;
 | |
| 
 | |
|  End:
 | |
|   free(histos);
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Histogram refinement
 | |
| 
 | |
| // What is the bit cost of moving square_histogram from cur_symbol to candidate.
 | |
| static double HistogramDistance(const VP8LHistogram* const square_histogram,
 | |
|                                 const VP8LHistogram* const candidate,
 | |
|                                 double cost_threshold) {
 | |
|   return HistogramAddThresh(candidate, square_histogram, cost_threshold);
 | |
| }
 | |
| 
 | |
| // Find the best 'out' histogram for each of the 'in' histograms.
 | |
| // Note: we assume that out[]->bit_cost_ is already up-to-date.
 | |
| static void HistogramRemap(const VP8LHistogramSet* const in,
 | |
|                            const VP8LHistogramSet* const out,
 | |
|                            uint16_t* const symbols) {
 | |
|   int i;
 | |
|   for (i = 0; i < in->size; ++i) {
 | |
|     int best_out = 0;
 | |
|     double best_bits =
 | |
|         HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
 | |
|     int k;
 | |
|     for (k = 1; k < out->size; ++k) {
 | |
|       const double cur_bits =
 | |
|           HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
 | |
|       if (cur_bits < best_bits) {
 | |
|         best_bits = cur_bits;
 | |
|         best_out = k;
 | |
|       }
 | |
|     }
 | |
|     symbols[i] = best_out;
 | |
|   }
 | |
| 
 | |
|   // Recompute each out based on raw and symbols.
 | |
|   for (i = 0; i < out->size; ++i) {
 | |
|     HistogramClear(out->histograms[i]);
 | |
|   }
 | |
|   for (i = 0; i < in->size; ++i) {
 | |
|     HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| int VP8LGetHistoImageSymbols(int xsize, int ysize,
 | |
|                              const VP8LBackwardRefs* const refs,
 | |
|                              int quality, int histo_bits, int cache_bits,
 | |
|                              VP8LHistogramSet* const image_in,
 | |
|                              uint16_t* const histogram_symbols) {
 | |
|   int ok = 0;
 | |
|   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
 | |
|   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
 | |
|   const int histo_image_raw_size = histo_xsize * histo_ysize;
 | |
| 
 | |
|   // Heuristic params for HistogramCombine().
 | |
|   const int num_tries_no_success = 8 + (quality >> 1);
 | |
|   const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
 | |
|   const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;
 | |
| 
 | |
|   VP8LHistogramSet* const image_out =
 | |
|       VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
 | |
|   if (image_out == NULL) return 0;
 | |
| 
 | |
|   // Build histogram image.
 | |
|   HistogramBuildImage(xsize, histo_bits, refs, image_out);
 | |
|   // Collapse similar histograms.
 | |
|   if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
 | |
|                         num_tries_no_success)) {
 | |
|     goto Error;
 | |
|   }
 | |
|   // Find the optimal map from original histograms to the final ones.
 | |
|   HistogramRemap(image_out, image_in, histogram_symbols);
 | |
|   ok = 1;
 | |
| 
 | |
| Error:
 | |
|   free(image_out);
 | |
|   return ok;
 | |
| }
 | 
