980 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			980 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2011 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Use of this source code is governed by a BSD-style license
 | |
| // that can be found in the COPYING file in the root of the source
 | |
| // tree. An additional intellectual property rights grant can be found
 | |
| // in the file PATENTS. All contributing project authors may
 | |
| // be found in the AUTHORS file in the root of the source tree.
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| //   frame coding and analysis
 | |
| //
 | |
| // Author: Skal (pascal.massimino@gmail.com)
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "./vp8enci.h"
 | |
| #include "./cost.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define SEGMENT_VISU 0
 | |
| #define DEBUG_SEARCH 0    // useful to track search convergence
 | |
| 
 | |
| // On-the-fly info about the current set of residuals. Handy to avoid
 | |
| // passing zillions of params.
 | |
| typedef struct {
 | |
|   int first;
 | |
|   int last;
 | |
|   const int16_t* coeffs;
 | |
| 
 | |
|   int coeff_type;
 | |
|   ProbaArray* prob;
 | |
|   StatsArray* stats;
 | |
|   CostArray*  cost;
 | |
| } VP8Residual;
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Tables for level coding
 | |
| 
 | |
| const uint8_t VP8EncBands[16 + 1] = {
 | |
|   0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
 | |
|   0  // sentinel
 | |
| };
 | |
| 
 | |
| const uint8_t VP8Cat3[] = { 173, 148, 140 };
 | |
| const uint8_t VP8Cat4[] = { 176, 155, 140, 135 };
 | |
| const uint8_t VP8Cat5[] = { 180, 157, 141, 134, 130 };
 | |
| const uint8_t VP8Cat6[] =
 | |
|     { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Reset the statistics about: number of skips, token proba, level cost,...
 | |
| 
 | |
| static void ResetStats(VP8Encoder* const enc) {
 | |
|   VP8Proba* const proba = &enc->proba_;
 | |
|   VP8CalculateLevelCosts(proba);
 | |
|   proba->nb_skip_ = 0;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Skip decision probability
 | |
| 
 | |
| #define SKIP_PROBA_THRESHOLD 250  // value below which using skip_proba is OK.
 | |
| 
 | |
| static int CalcSkipProba(uint64_t nb, uint64_t total) {
 | |
|   return (int)(total ? (total - nb) * 255 / total : 255);
 | |
| }
 | |
| 
 | |
| // Returns the bit-cost for coding the skip probability.
 | |
| static int FinalizeSkipProba(VP8Encoder* const enc) {
 | |
|   VP8Proba* const proba = &enc->proba_;
 | |
|   const int nb_mbs = enc->mb_w_ * enc->mb_h_;
 | |
|   const int nb_events = proba->nb_skip_;
 | |
|   int size;
 | |
|   proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs);
 | |
|   proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD);
 | |
|   size = 256;   // 'use_skip_proba' bit
 | |
|   if (proba->use_skip_proba_) {
 | |
|     size +=  nb_events * VP8BitCost(1, proba->skip_proba_)
 | |
|          + (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_);
 | |
|     size += 8 * 256;   // cost of signaling the skip_proba_ itself.
 | |
|   }
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Recording of token probabilities.
 | |
| 
 | |
| static void ResetTokenStats(VP8Encoder* const enc) {
 | |
|   VP8Proba* const proba = &enc->proba_;
 | |
|   memset(proba->stats_, 0, sizeof(proba->stats_));
 | |
| }
 | |
| 
 | |
| // Record proba context used
 | |
| static int Record(int bit, proba_t* const stats) {
 | |
|   proba_t p = *stats;
 | |
|   if (p >= 0xffff0000u) {               // an overflow is inbound.
 | |
|     p = ((p + 1u) >> 1) & 0x7fff7fffu;  // -> divide the stats by 2.
 | |
|   }
 | |
|   // record bit count (lower 16 bits) and increment total count (upper 16 bits).
 | |
|   p += 0x00010000u + bit;
 | |
|   *stats = p;
 | |
|   return bit;
 | |
| }
 | |
| 
 | |
| // We keep the table free variant around for reference, in case.
 | |
| #define USE_LEVEL_CODE_TABLE
 | |
| 
 | |
| // Simulate block coding, but only record statistics.
 | |
| // Note: no need to record the fixed probas.
 | |
| static int RecordCoeffs(int ctx, const VP8Residual* const res) {
 | |
|   int n = res->first;
 | |
|   // should be stats[VP8EncBands[n]], but it's equivalent for n=0 or 1
 | |
|   proba_t* s = res->stats[n][ctx];
 | |
|   if (res->last  < 0) {
 | |
|     Record(0, s + 0);
 | |
|     return 0;
 | |
|   }
 | |
|   while (n <= res->last) {
 | |
|     int v;
 | |
|     Record(1, s + 0);  // order of record doesn't matter
 | |
|     while ((v = res->coeffs[n++]) == 0) {
 | |
|       Record(0, s + 1);
 | |
|       s = res->stats[VP8EncBands[n]][0];
 | |
|     }
 | |
|     Record(1, s + 1);
 | |
|     if (!Record(2u < (unsigned int)(v + 1), s + 2)) {  // v = -1 or 1
 | |
|       s = res->stats[VP8EncBands[n]][1];
 | |
|     } else {
 | |
|       v = abs(v);
 | |
| #if !defined(USE_LEVEL_CODE_TABLE)
 | |
|       if (!Record(v > 4, s + 3)) {
 | |
|         if (Record(v != 2, s + 4))
 | |
|           Record(v == 4, s + 5);
 | |
|       } else if (!Record(v > 10, s + 6)) {
 | |
|         Record(v > 6, s + 7);
 | |
|       } else if (!Record((v >= 3 + (8 << 2)), s + 8)) {
 | |
|         Record((v >= 3 + (8 << 1)), s + 9);
 | |
|       } else {
 | |
|         Record((v >= 3 + (8 << 3)), s + 10);
 | |
|       }
 | |
| #else
 | |
|       if (v > MAX_VARIABLE_LEVEL)
 | |
|         v = MAX_VARIABLE_LEVEL;
 | |
| 
 | |
|       {
 | |
|         const int bits = VP8LevelCodes[v - 1][1];
 | |
|         int pattern = VP8LevelCodes[v - 1][0];
 | |
|         int i;
 | |
|         for (i = 0; (pattern >>= 1) != 0; ++i) {
 | |
|           const int mask = 2 << i;
 | |
|           if (pattern & 1) Record(!!(bits & mask), s + 3 + i);
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       s = res->stats[VP8EncBands[n]][2];
 | |
|     }
 | |
|   }
 | |
|   if (n < 16) Record(0, s + 0);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| // Collect statistics and deduce probabilities for next coding pass.
 | |
| // Return the total bit-cost for coding the probability updates.
 | |
| static int CalcTokenProba(int nb, int total) {
 | |
|   assert(nb <= total);
 | |
|   return nb ? (255 - nb * 255 / total) : 255;
 | |
| }
 | |
| 
 | |
| // Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability.
 | |
| static int BranchCost(int nb, int total, int proba) {
 | |
|   return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba);
 | |
| }
 | |
| 
 | |
| static int FinalizeTokenProbas(VP8Proba* const proba) {
 | |
|   int has_changed = 0;
 | |
|   int size = 0;
 | |
|   int t, b, c, p;
 | |
|   for (t = 0; t < NUM_TYPES; ++t) {
 | |
|     for (b = 0; b < NUM_BANDS; ++b) {
 | |
|       for (c = 0; c < NUM_CTX; ++c) {
 | |
|         for (p = 0; p < NUM_PROBAS; ++p) {
 | |
|           const proba_t stats = proba->stats_[t][b][c][p];
 | |
|           const int nb = (stats >> 0) & 0xffff;
 | |
|           const int total = (stats >> 16) & 0xffff;
 | |
|           const int update_proba = VP8CoeffsUpdateProba[t][b][c][p];
 | |
|           const int old_p = VP8CoeffsProba0[t][b][c][p];
 | |
|           const int new_p = CalcTokenProba(nb, total);
 | |
|           const int old_cost = BranchCost(nb, total, old_p)
 | |
|                              + VP8BitCost(0, update_proba);
 | |
|           const int new_cost = BranchCost(nb, total, new_p)
 | |
|                              + VP8BitCost(1, update_proba)
 | |
|                              + 8 * 256;
 | |
|           const int use_new_p = (old_cost > new_cost);
 | |
|           size += VP8BitCost(use_new_p, update_proba);
 | |
|           if (use_new_p) {  // only use proba that seem meaningful enough.
 | |
|             proba->coeffs_[t][b][c][p] = new_p;
 | |
|             has_changed |= (new_p != old_p);
 | |
|             size += 8 * 256;
 | |
|           } else {
 | |
|             proba->coeffs_[t][b][c][p] = old_p;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   proba->dirty_ = has_changed;
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Finalize Segment probability based on the coding tree
 | |
| 
 | |
| static int GetProba(int a, int b) {
 | |
|   const int total = a + b;
 | |
|   return (total == 0) ? 255     // that's the default probability.
 | |
|                       : (255 * a + total / 2) / total;  // rounded proba
 | |
| }
 | |
| 
 | |
| static void SetSegmentProbas(VP8Encoder* const enc) {
 | |
|   int p[NUM_MB_SEGMENTS] = { 0 };
 | |
|   int n;
 | |
| 
 | |
|   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
 | |
|     const VP8MBInfo* const mb = &enc->mb_info_[n];
 | |
|     p[mb->segment_]++;
 | |
|   }
 | |
|   if (enc->pic_->stats != NULL) {
 | |
|     for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
 | |
|       enc->pic_->stats->segment_size[n] = p[n];
 | |
|     }
 | |
|   }
 | |
|   if (enc->segment_hdr_.num_segments_ > 1) {
 | |
|     uint8_t* const probas = enc->proba_.segments_;
 | |
|     probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
 | |
|     probas[1] = GetProba(p[0], p[1]);
 | |
|     probas[2] = GetProba(p[2], p[3]);
 | |
| 
 | |
|     enc->segment_hdr_.update_map_ =
 | |
|         (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
 | |
|     enc->segment_hdr_.size_ =
 | |
|         p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
 | |
|         p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
 | |
|         p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
 | |
|         p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
 | |
|   } else {
 | |
|     enc->segment_hdr_.update_map_ = 0;
 | |
|     enc->segment_hdr_.size_ = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // helper functions for residuals struct VP8Residual.
 | |
| 
 | |
| static void InitResidual(int first, int coeff_type,
 | |
|                          VP8Encoder* const enc, VP8Residual* const res) {
 | |
|   res->coeff_type = coeff_type;
 | |
|   res->prob  = enc->proba_.coeffs_[coeff_type];
 | |
|   res->stats = enc->proba_.stats_[coeff_type];
 | |
|   res->cost  = enc->proba_.level_cost_[coeff_type];
 | |
|   res->first = first;
 | |
| }
 | |
| 
 | |
| static void SetResidualCoeffs(const int16_t* const coeffs,
 | |
|                               VP8Residual* const res) {
 | |
|   int n;
 | |
|   res->last = -1;
 | |
|   for (n = 15; n >= res->first; --n) {
 | |
|     if (coeffs[n]) {
 | |
|       res->last = n;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   res->coeffs = coeffs;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Mode costs
 | |
| 
 | |
| static int GetResidualCost(int ctx0, const VP8Residual* const res) {
 | |
|   int n = res->first;
 | |
|   // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1
 | |
|   int p0 = res->prob[n][ctx0][0];
 | |
|   const uint16_t* t = res->cost[n][ctx0];
 | |
|   int cost;
 | |
| 
 | |
|   if (res->last < 0) {
 | |
|     return VP8BitCost(0, p0);
 | |
|   }
 | |
|   cost = 0;
 | |
|   while (n < res->last) {
 | |
|     int v = res->coeffs[n];
 | |
|     const int b = VP8EncBands[n + 1];
 | |
|     ++n;
 | |
|     if (v == 0) {
 | |
|       // short-case for VP8LevelCost(t, 0) (note: VP8LevelFixedCosts[0] == 0):
 | |
|       cost += t[0];
 | |
|       t = res->cost[b][0];
 | |
|       continue;
 | |
|     }
 | |
|     v = abs(v);
 | |
|     cost += VP8BitCost(1, p0);
 | |
|     cost += VP8LevelCost(t, v);
 | |
|     {
 | |
|       const int ctx = (v == 1) ? 1 : 2;
 | |
|       p0 = res->prob[b][ctx][0];
 | |
|       t = res->cost[b][ctx];
 | |
|     }
 | |
|   }
 | |
|   // Last coefficient is always non-zero
 | |
|   {
 | |
|     const int v = abs(res->coeffs[n]);
 | |
|     assert(v != 0);
 | |
|     cost += VP8BitCost(1, p0);
 | |
|     cost += VP8LevelCost(t, v);
 | |
|     if (n < 15) {
 | |
|       const int b = VP8EncBands[n + 1];
 | |
|       const int ctx = (v == 1) ? 1 : 2;
 | |
|       const int last_p0 = res->prob[b][ctx][0];
 | |
|       cost += VP8BitCost(0, last_p0);
 | |
|     }
 | |
|   }
 | |
|   return cost;
 | |
| }
 | |
| 
 | |
| int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) {
 | |
|   const int x = (it->i4_ & 3), y = (it->i4_ >> 2);
 | |
|   VP8Residual res;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   int R = 0;
 | |
|   int ctx;
 | |
| 
 | |
|   InitResidual(0, 3, enc, &res);
 | |
|   ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|   SetResidualCoeffs(levels, &res);
 | |
|   R += GetResidualCost(ctx, &res);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) {
 | |
|   VP8Residual res;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   int x, y;
 | |
|   int R = 0;
 | |
| 
 | |
|   VP8IteratorNzToBytes(it);   // re-import the non-zero context
 | |
| 
 | |
|   // DC
 | |
|   InitResidual(0, 1, enc, &res);
 | |
|   SetResidualCoeffs(rd->y_dc_levels, &res);
 | |
|   R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res);
 | |
| 
 | |
|   // AC
 | |
|   InitResidual(1, 0, enc, &res);
 | |
|   for (y = 0; y < 4; ++y) {
 | |
|     for (x = 0; x < 4; ++x) {
 | |
|       const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|       SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
 | |
|       R += GetResidualCost(ctx, &res);
 | |
|       it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0);
 | |
|     }
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) {
 | |
|   VP8Residual res;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   int ch, x, y;
 | |
|   int R = 0;
 | |
| 
 | |
|   VP8IteratorNzToBytes(it);  // re-import the non-zero context
 | |
| 
 | |
|   InitResidual(0, 2, enc, &res);
 | |
|   for (ch = 0; ch <= 2; ch += 2) {
 | |
|     for (y = 0; y < 2; ++y) {
 | |
|       for (x = 0; x < 2; ++x) {
 | |
|         const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
 | |
|         SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
 | |
|         R += GetResidualCost(ctx, &res);
 | |
|         it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Coefficient coding
 | |
| 
 | |
| static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) {
 | |
|   int n = res->first;
 | |
|   // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1
 | |
|   const uint8_t* p = res->prob[n][ctx];
 | |
|   if (!VP8PutBit(bw, res->last >= 0, p[0])) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   while (n < 16) {
 | |
|     const int c = res->coeffs[n++];
 | |
|     const int sign = c < 0;
 | |
|     int v = sign ? -c : c;
 | |
|     if (!VP8PutBit(bw, v != 0, p[1])) {
 | |
|       p = res->prob[VP8EncBands[n]][0];
 | |
|       continue;
 | |
|     }
 | |
|     if (!VP8PutBit(bw, v > 1, p[2])) {
 | |
|       p = res->prob[VP8EncBands[n]][1];
 | |
|     } else {
 | |
|       if (!VP8PutBit(bw, v > 4, p[3])) {
 | |
|         if (VP8PutBit(bw, v != 2, p[4]))
 | |
|           VP8PutBit(bw, v == 4, p[5]);
 | |
|       } else if (!VP8PutBit(bw, v > 10, p[6])) {
 | |
|         if (!VP8PutBit(bw, v > 6, p[7])) {
 | |
|           VP8PutBit(bw, v == 6, 159);
 | |
|         } else {
 | |
|           VP8PutBit(bw, v >= 9, 165);
 | |
|           VP8PutBit(bw, !(v & 1), 145);
 | |
|         }
 | |
|       } else {
 | |
|         int mask;
 | |
|         const uint8_t* tab;
 | |
|         if (v < 3 + (8 << 1)) {          // VP8Cat3  (3b)
 | |
|           VP8PutBit(bw, 0, p[8]);
 | |
|           VP8PutBit(bw, 0, p[9]);
 | |
|           v -= 3 + (8 << 0);
 | |
|           mask = 1 << 2;
 | |
|           tab = VP8Cat3;
 | |
|         } else if (v < 3 + (8 << 2)) {   // VP8Cat4  (4b)
 | |
|           VP8PutBit(bw, 0, p[8]);
 | |
|           VP8PutBit(bw, 1, p[9]);
 | |
|           v -= 3 + (8 << 1);
 | |
|           mask = 1 << 3;
 | |
|           tab = VP8Cat4;
 | |
|         } else if (v < 3 + (8 << 3)) {   // VP8Cat5  (5b)
 | |
|           VP8PutBit(bw, 1, p[8]);
 | |
|           VP8PutBit(bw, 0, p[10]);
 | |
|           v -= 3 + (8 << 2);
 | |
|           mask = 1 << 4;
 | |
|           tab = VP8Cat5;
 | |
|         } else {                         // VP8Cat6 (11b)
 | |
|           VP8PutBit(bw, 1, p[8]);
 | |
|           VP8PutBit(bw, 1, p[10]);
 | |
|           v -= 3 + (8 << 3);
 | |
|           mask = 1 << 10;
 | |
|           tab = VP8Cat6;
 | |
|         }
 | |
|         while (mask) {
 | |
|           VP8PutBit(bw, !!(v & mask), *tab++);
 | |
|           mask >>= 1;
 | |
|         }
 | |
|       }
 | |
|       p = res->prob[VP8EncBands[n]][2];
 | |
|     }
 | |
|     VP8PutBitUniform(bw, sign);
 | |
|     if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) {
 | |
|       return 1;   // EOB
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it,
 | |
|                           const VP8ModeScore* const rd) {
 | |
|   int x, y, ch;
 | |
|   VP8Residual res;
 | |
|   uint64_t pos1, pos2, pos3;
 | |
|   const int i16 = (it->mb_->type_ == 1);
 | |
|   const int segment = it->mb_->segment_;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
| 
 | |
|   VP8IteratorNzToBytes(it);
 | |
| 
 | |
|   pos1 = VP8BitWriterPos(bw);
 | |
|   if (i16) {
 | |
|     InitResidual(0, 1, enc, &res);
 | |
|     SetResidualCoeffs(rd->y_dc_levels, &res);
 | |
|     it->top_nz_[8] = it->left_nz_[8] =
 | |
|       PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res);
 | |
|     InitResidual(1, 0, enc, &res);
 | |
|   } else {
 | |
|     InitResidual(0, 3, enc, &res);
 | |
|   }
 | |
| 
 | |
|   // luma-AC
 | |
|   for (y = 0; y < 4; ++y) {
 | |
|     for (x = 0; x < 4; ++x) {
 | |
|       const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|       SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
 | |
|       it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res);
 | |
|     }
 | |
|   }
 | |
|   pos2 = VP8BitWriterPos(bw);
 | |
| 
 | |
|   // U/V
 | |
|   InitResidual(0, 2, enc, &res);
 | |
|   for (ch = 0; ch <= 2; ch += 2) {
 | |
|     for (y = 0; y < 2; ++y) {
 | |
|       for (x = 0; x < 2; ++x) {
 | |
|         const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
 | |
|         SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
 | |
|         it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
 | |
|             PutCoeffs(bw, ctx, &res);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   pos3 = VP8BitWriterPos(bw);
 | |
|   it->luma_bits_ = pos2 - pos1;
 | |
|   it->uv_bits_ = pos3 - pos2;
 | |
|   it->bit_count_[segment][i16] += it->luma_bits_;
 | |
|   it->bit_count_[segment][2] += it->uv_bits_;
 | |
|   VP8IteratorBytesToNz(it);
 | |
| }
 | |
| 
 | |
| // Same as CodeResiduals, but doesn't actually write anything.
 | |
| // Instead, it just records the event distribution.
 | |
| static void RecordResiduals(VP8EncIterator* const it,
 | |
|                             const VP8ModeScore* const rd) {
 | |
|   int x, y, ch;
 | |
|   VP8Residual res;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
| 
 | |
|   VP8IteratorNzToBytes(it);
 | |
| 
 | |
|   if (it->mb_->type_ == 1) {   // i16x16
 | |
|     InitResidual(0, 1, enc, &res);
 | |
|     SetResidualCoeffs(rd->y_dc_levels, &res);
 | |
|     it->top_nz_[8] = it->left_nz_[8] =
 | |
|       RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res);
 | |
|     InitResidual(1, 0, enc, &res);
 | |
|   } else {
 | |
|     InitResidual(0, 3, enc, &res);
 | |
|   }
 | |
| 
 | |
|   // luma-AC
 | |
|   for (y = 0; y < 4; ++y) {
 | |
|     for (x = 0; x < 4; ++x) {
 | |
|       const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|       SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
 | |
|       it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // U/V
 | |
|   InitResidual(0, 2, enc, &res);
 | |
|   for (ch = 0; ch <= 2; ch += 2) {
 | |
|     for (y = 0; y < 2; ++y) {
 | |
|       for (x = 0; x < 2; ++x) {
 | |
|         const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
 | |
|         SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
 | |
|         it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
 | |
|             RecordCoeffs(ctx, &res);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VP8IteratorBytesToNz(it);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Token buffer
 | |
| 
 | |
| #if !defined(DISABLE_TOKEN_BUFFER)
 | |
| 
 | |
| static void RecordTokens(VP8EncIterator* const it, const VP8ModeScore* const rd,
 | |
|                          VP8TBuffer* const tokens) {
 | |
|   int x, y, ch;
 | |
|   VP8Residual res;
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
| 
 | |
|   VP8IteratorNzToBytes(it);
 | |
|   if (it->mb_->type_ == 1) {   // i16x16
 | |
|     const int ctx = it->top_nz_[8] + it->left_nz_[8];
 | |
|     InitResidual(0, 1, enc, &res);
 | |
|     SetResidualCoeffs(rd->y_dc_levels, &res);
 | |
|     it->top_nz_[8] = it->left_nz_[8] =
 | |
|         VP8RecordCoeffTokens(ctx, 1,
 | |
|                              res.first, res.last, res.coeffs, tokens);
 | |
|     RecordCoeffs(ctx, &res);
 | |
|     InitResidual(1, 0, enc, &res);
 | |
|   } else {
 | |
|     InitResidual(0, 3, enc, &res);
 | |
|   }
 | |
| 
 | |
|   // luma-AC
 | |
|   for (y = 0; y < 4; ++y) {
 | |
|     for (x = 0; x < 4; ++x) {
 | |
|       const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|       SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
 | |
|       it->top_nz_[x] = it->left_nz_[y] =
 | |
|           VP8RecordCoeffTokens(ctx, res.coeff_type,
 | |
|                                res.first, res.last, res.coeffs, tokens);
 | |
|       RecordCoeffs(ctx, &res);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // U/V
 | |
|   InitResidual(0, 2, enc, &res);
 | |
|   for (ch = 0; ch <= 2; ch += 2) {
 | |
|     for (y = 0; y < 2; ++y) {
 | |
|       for (x = 0; x < 2; ++x) {
 | |
|         const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
 | |
|         SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
 | |
|         it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
 | |
|             VP8RecordCoeffTokens(ctx, 2,
 | |
|                                  res.first, res.last, res.coeffs, tokens);
 | |
|         RecordCoeffs(ctx, &res);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   VP8IteratorBytesToNz(it);
 | |
| }
 | |
| 
 | |
| #endif    // !DISABLE_TOKEN_BUFFER
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // ExtraInfo map / Debug function
 | |
| 
 | |
| #if SEGMENT_VISU
 | |
| static void SetBlock(uint8_t* p, int value, int size) {
 | |
|   int y;
 | |
|   for (y = 0; y < size; ++y) {
 | |
|     memset(p, value, size);
 | |
|     p += BPS;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ResetSSE(VP8Encoder* const enc) {
 | |
|   enc->sse_[0] = 0;
 | |
|   enc->sse_[1] = 0;
 | |
|   enc->sse_[2] = 0;
 | |
|   // Note: enc->sse_[3] is managed by alpha.c
 | |
|   enc->sse_count_ = 0;
 | |
| }
 | |
| 
 | |
| static void StoreSSE(const VP8EncIterator* const it) {
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const in = it->yuv_in_;
 | |
|   const uint8_t* const out = it->yuv_out_;
 | |
|   // Note: not totally accurate at boundary. And doesn't include in-loop filter.
 | |
|   enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF);
 | |
|   enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF);
 | |
|   enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF);
 | |
|   enc->sse_count_ += 16 * 16;
 | |
| }
 | |
| 
 | |
| static void StoreSideInfo(const VP8EncIterator* const it) {
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   const VP8MBInfo* const mb = it->mb_;
 | |
|   WebPPicture* const pic = enc->pic_;
 | |
| 
 | |
|   if (pic->stats != NULL) {
 | |
|     StoreSSE(it);
 | |
|     enc->block_count_[0] += (mb->type_ == 0);
 | |
|     enc->block_count_[1] += (mb->type_ == 1);
 | |
|     enc->block_count_[2] += (mb->skip_ != 0);
 | |
|   }
 | |
| 
 | |
|   if (pic->extra_info != NULL) {
 | |
|     uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_];
 | |
|     switch (pic->extra_info_type) {
 | |
|       case 1: *info = mb->type_; break;
 | |
|       case 2: *info = mb->segment_; break;
 | |
|       case 3: *info = enc->dqm_[mb->segment_].quant_; break;
 | |
|       case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break;
 | |
|       case 5: *info = mb->uv_mode_; break;
 | |
|       case 6: {
 | |
|         const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
 | |
|         *info = (b > 255) ? 255 : b; break;
 | |
|       }
 | |
|       case 7: *info = mb->alpha_; break;
 | |
|       default: *info = 0; break;
 | |
|     };
 | |
|   }
 | |
| #if SEGMENT_VISU  // visualize segments and prediction modes
 | |
|   SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16);
 | |
|   SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8);
 | |
|   SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //  StatLoop(): only collect statistics (number of skips, token usage, ...).
 | |
| //  This is used for deciding optimal probabilities. It also modifies the
 | |
| //  quantizer value if some target (size, PNSR) was specified.
 | |
| 
 | |
| #define kHeaderSizeEstimate (15 + 20 + 10)      // TODO: fix better
 | |
| 
 | |
| static void SetLoopParams(VP8Encoder* const enc, float q) {
 | |
|   // Make sure the quality parameter is inside valid bounds
 | |
|   if (q < 0.) {
 | |
|     q = 0;
 | |
|   } else if (q > 100.) {
 | |
|     q = 100;
 | |
|   }
 | |
| 
 | |
|   VP8SetSegmentParams(enc, q);      // setup segment quantizations and filters
 | |
|   SetSegmentProbas(enc);            // compute segment probabilities
 | |
| 
 | |
|   ResetStats(enc);
 | |
|   ResetTokenStats(enc);
 | |
| 
 | |
|   ResetSSE(enc);
 | |
| }
 | |
| 
 | |
| static int OneStatPass(VP8Encoder* const enc, float q, VP8RDLevel rd_opt,
 | |
|                        int nb_mbs, float* const PSNR, int percent_delta) {
 | |
|   VP8EncIterator it;
 | |
|   uint64_t size = 0;
 | |
|   uint64_t distortion = 0;
 | |
|   const uint64_t pixel_count = nb_mbs * 384;
 | |
| 
 | |
|   SetLoopParams(enc, q);
 | |
| 
 | |
|   VP8IteratorInit(enc, &it);
 | |
|   do {
 | |
|     VP8ModeScore info;
 | |
|     VP8IteratorImport(&it);
 | |
|     if (VP8Decimate(&it, &info, rd_opt)) {
 | |
|       // Just record the number of skips and act like skip_proba is not used.
 | |
|       enc->proba_.nb_skip_++;
 | |
|     }
 | |
|     RecordResiduals(&it, &info);
 | |
|     size += info.R;
 | |
|     distortion += info.D;
 | |
|     if (percent_delta && !VP8IteratorProgress(&it, percent_delta))
 | |
|       return 0;
 | |
|   } while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0);
 | |
|   size += FinalizeSkipProba(enc);
 | |
|   size += FinalizeTokenProbas(&enc->proba_);
 | |
|   size += enc->segment_hdr_.size_;
 | |
|   size = ((size + 1024) >> 11) + kHeaderSizeEstimate;
 | |
| 
 | |
|   if (PSNR) {
 | |
|     *PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion));
 | |
|   }
 | |
|   return (int)size;
 | |
| }
 | |
| 
 | |
| // successive refinement increments.
 | |
| static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 };
 | |
| 
 | |
| static int StatLoop(VP8Encoder* const enc) {
 | |
|   const int method = enc->method_;
 | |
|   const int do_search = enc->do_search_;
 | |
|   const int fast_probe = ((method == 0 || method == 3) && !do_search);
 | |
|   float q = enc->config_->quality;
 | |
|   const int max_passes = enc->config_->pass;
 | |
|   const int task_percent = 20;
 | |
|   const int percent_per_pass = (task_percent + max_passes / 2) / max_passes;
 | |
|   const int final_percent = enc->percent_ + task_percent;
 | |
|   int pass;
 | |
|   int nb_mbs;
 | |
| 
 | |
|   // Fast mode: quick analysis pass over few mbs. Better than nothing.
 | |
|   nb_mbs = enc->mb_w_ * enc->mb_h_;
 | |
|   if (fast_probe) {
 | |
|     if (method == 3) {  // we need more stats for method 3 to be reliable.
 | |
|       nb_mbs = (nb_mbs > 200) ? nb_mbs >> 1 : 100;
 | |
|     } else {
 | |
|       nb_mbs = (nb_mbs > 200) ? nb_mbs >> 2 : 50;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No target size: just do several pass without changing 'q'
 | |
|   if (!do_search) {
 | |
|     for (pass = 0; pass < max_passes; ++pass) {
 | |
|       const VP8RDLevel rd_opt = (method >= 3) ? RD_OPT_BASIC : RD_OPT_NONE;
 | |
|       if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) {
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // binary search for a size close to target
 | |
|     for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) {
 | |
|       float PSNR;
 | |
|       int criterion;
 | |
|       const int size = OneStatPass(enc, q, RD_OPT_BASIC, nb_mbs, &PSNR,
 | |
|                                    percent_per_pass);
 | |
| #if DEBUG_SEARCH
 | |
|       printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q);
 | |
| #endif
 | |
|       if (size == 0) return 0;
 | |
|       if (enc->config_->target_PSNR > 0) {
 | |
|         criterion = (PSNR < enc->config_->target_PSNR);
 | |
|       } else {
 | |
|         criterion = (size < enc->config_->target_size);
 | |
|       }
 | |
|       // dichotomize
 | |
|       if (criterion) {
 | |
|         q += dqs[pass];
 | |
|       } else {
 | |
|         q -= dqs[pass];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   VP8CalculateLevelCosts(&enc->proba_);  // finalize costs
 | |
|   return WebPReportProgress(enc->pic_, final_percent, &enc->percent_);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Main loops
 | |
| //
 | |
| 
 | |
| static const int kAverageBytesPerMB[8] = { 50, 24, 16, 9, 7, 5, 3, 2 };
 | |
| 
 | |
| static int PreLoopInitialize(VP8Encoder* const enc) {
 | |
|   int p;
 | |
|   int ok = 1;
 | |
|   const int average_bytes_per_MB = kAverageBytesPerMB[enc->base_quant_ >> 4];
 | |
|   const int bytes_per_parts =
 | |
|       enc->mb_w_ * enc->mb_h_ * average_bytes_per_MB / enc->num_parts_;
 | |
|   // Initialize the bit-writers
 | |
|   for (p = 0; ok && p < enc->num_parts_; ++p) {
 | |
|     ok = VP8BitWriterInit(enc->parts_ + p, bytes_per_parts);
 | |
|   }
 | |
|   if (!ok) VP8EncFreeBitWriters(enc);  // malloc error occurred
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| static int PostLoopFinalize(VP8EncIterator* const it, int ok) {
 | |
|   VP8Encoder* const enc = it->enc_;
 | |
|   if (ok) {      // Finalize the partitions, check for extra errors.
 | |
|     int p;
 | |
|     for (p = 0; p < enc->num_parts_; ++p) {
 | |
|       VP8BitWriterFinish(enc->parts_ + p);
 | |
|       ok &= !enc->parts_[p].error_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ok) {      // All good. Finish up.
 | |
|     if (enc->pic_->stats) {           // finalize byte counters...
 | |
|       int i, s;
 | |
|       for (i = 0; i <= 2; ++i) {
 | |
|         for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
 | |
|           enc->residual_bytes_[i][s] = (int)((it->bit_count_[s][i] + 7) >> 3);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     VP8AdjustFilterStrength(it);     // ...and store filter stats.
 | |
|   } else {
 | |
|     // Something bad happened -> need to do some memory cleanup.
 | |
|     VP8EncFreeBitWriters(enc);
 | |
|   }
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //  VP8EncLoop(): does the final bitstream coding.
 | |
| 
 | |
| static void ResetAfterSkip(VP8EncIterator* const it) {
 | |
|   if (it->mb_->type_ == 1) {
 | |
|     *it->nz_ = 0;  // reset all predictors
 | |
|     it->left_nz_[8] = 0;
 | |
|   } else {
 | |
|     *it->nz_ &= (1 << 24);  // preserve the dc_nz bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| int VP8EncLoop(VP8Encoder* const enc) {
 | |
|   VP8EncIterator it;
 | |
|   int ok = PreLoopInitialize(enc);
 | |
|   if (!ok) return 0;
 | |
| 
 | |
|   StatLoop(enc);  // stats-collection loop
 | |
| 
 | |
|   VP8IteratorInit(enc, &it);
 | |
|   VP8InitFilter(&it);
 | |
|   do {
 | |
|     VP8ModeScore info;
 | |
|     const int dont_use_skip = !enc->proba_.use_skip_proba_;
 | |
|     const VP8RDLevel rd_opt = enc->rd_opt_level_;
 | |
| 
 | |
|     VP8IteratorImport(&it);
 | |
|     // Warning! order is important: first call VP8Decimate() and
 | |
|     // *then* decide how to code the skip decision if there's one.
 | |
|     if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) {
 | |
|       CodeResiduals(it.bw_, &it, &info);
 | |
|     } else {   // reset predictors after a skip
 | |
|       ResetAfterSkip(&it);
 | |
|     }
 | |
| #ifdef WEBP_EXPERIMENTAL_FEATURES
 | |
|     if (enc->use_layer_) {
 | |
|       VP8EncCodeLayerBlock(&it);
 | |
|     }
 | |
| #endif
 | |
|     StoreSideInfo(&it);
 | |
|     VP8StoreFilterStats(&it);
 | |
|     VP8IteratorExport(&it);
 | |
|     ok = VP8IteratorProgress(&it, 20);
 | |
|   } while (ok && VP8IteratorNext(&it, it.yuv_out_));
 | |
| 
 | |
|   return PostLoopFinalize(&it, ok);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Single pass using Token Buffer.
 | |
| 
 | |
| #if !defined(DISABLE_TOKEN_BUFFER)
 | |
| 
 | |
| #define MIN_COUNT 96   // minimum number of macroblocks before updating stats
 | |
| 
 | |
| int VP8EncTokenLoop(VP8Encoder* const enc) {
 | |
|   int ok;
 | |
|   // Roughly refresh the proba height times per pass
 | |
|   int max_count = (enc->mb_w_ * enc->mb_h_) >> 3;
 | |
|   int cnt;
 | |
|   VP8EncIterator it;
 | |
|   VP8Proba* const proba = &enc->proba_;
 | |
|   const VP8RDLevel rd_opt = enc->rd_opt_level_;
 | |
| 
 | |
|   if (max_count < MIN_COUNT) max_count = MIN_COUNT;
 | |
|   cnt = max_count;
 | |
| 
 | |
|   assert(enc->num_parts_ == 1);
 | |
|   assert(enc->use_tokens_);
 | |
|   assert(proba->use_skip_proba_ == 0);
 | |
|   assert(rd_opt >= RD_OPT_BASIC);   // otherwise, token-buffer won't be useful
 | |
|   assert(!enc->do_search_);         // TODO(skal): handle pass and dichotomy
 | |
| 
 | |
|   SetLoopParams(enc, enc->config_->quality);
 | |
| 
 | |
|   ok = PreLoopInitialize(enc);
 | |
|   if (!ok) return 0;
 | |
| 
 | |
|   VP8IteratorInit(enc, &it);
 | |
|   VP8InitFilter(&it);
 | |
|   do {
 | |
|     VP8ModeScore info;
 | |
|     VP8IteratorImport(&it);
 | |
|     if (--cnt < 0) {
 | |
|       FinalizeTokenProbas(proba);
 | |
|       VP8CalculateLevelCosts(proba);  // refresh cost tables for rd-opt
 | |
|       cnt = max_count;
 | |
|     }
 | |
|     VP8Decimate(&it, &info, rd_opt);
 | |
|     RecordTokens(&it, &info, &enc->tokens_);
 | |
| #ifdef WEBP_EXPERIMENTAL_FEATURES
 | |
|     if (enc->use_layer_) {
 | |
|       VP8EncCodeLayerBlock(&it);
 | |
|     }
 | |
| #endif
 | |
|     StoreSideInfo(&it);
 | |
|     VP8StoreFilterStats(&it);
 | |
|     VP8IteratorExport(&it);
 | |
|     ok = VP8IteratorProgress(&it, 20);
 | |
|   } while (ok && VP8IteratorNext(&it, it.yuv_out_));
 | |
| 
 | |
|   ok = ok && WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
 | |
| 
 | |
|   if (ok) {
 | |
|     FinalizeTokenProbas(proba);
 | |
|     ok = VP8EmitTokens(&enc->tokens_, enc->parts_ + 0,
 | |
|                        (const uint8_t*)proba->coeffs_, 1);
 | |
|   }
 | |
| 
 | |
|   return PostLoopFinalize(&it, ok);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| int VP8EncTokenLoop(VP8Encoder* const enc) {
 | |
|   (void)enc;
 | |
|   return 0;   // we shouldn't be here.
 | |
| }
 | |
| 
 | |
| #endif    // DISABLE_TOKEN_BUFFER
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }    // extern "C"
 | |
| #endif
 | 
