1061 lines
34 KiB
ReStructuredText
1061 lines
34 KiB
ReStructuredText
Common Interfaces of Feature Detectors
|
|
======================================
|
|
|
|
Feature detectors in OpenCV have wrappers with common interface that enables to switch easily
|
|
between different algorithms solving the same problem. All objects that implement keypoint detectors
|
|
inherit
|
|
:func:`FeatureDetector` interface.
|
|
|
|
.. index:: KeyPoint
|
|
|
|
.. KeyPoint:
|
|
|
|
KeyPoint
|
|
--------
|
|
.. c:type:: KeyPoint
|
|
|
|
Data structure for salient point detectors. ::
|
|
|
|
class KeyPoint
|
|
{
|
|
public:
|
|
// the default constructor
|
|
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0),
|
|
class_id(-1) {}
|
|
// the full constructor
|
|
KeyPoint(Point2f _pt, float _size, float _angle=-1,
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
: pt(_pt), size(_size), angle(_angle), response(_response),
|
|
octave(_octave), class_id(_class_id) {}
|
|
// another form of the full constructor
|
|
KeyPoint(float x, float y, float _size, float _angle=-1,
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
: pt(x, y), size(_size), angle(_angle), response(_response),
|
|
octave(_octave), class_id(_class_id) {}
|
|
// converts vector of keypoints to vector of points
|
|
static void convert(const std::vector<KeyPoint>& keypoints,
|
|
std::vector<Point2f>& points2f,
|
|
const std::vector<int>& keypointIndexes=std::vector<int>());
|
|
// converts vector of points to the vector of keypoints, where each
|
|
// keypoint is assigned the same size and the same orientation
|
|
static void convert(const std::vector<Point2f>& points2f,
|
|
std::vector<KeyPoint>& keypoints,
|
|
float size=1, float response=1, int octave=0,
|
|
int class_id=-1);
|
|
|
|
// computes overlap for pair of keypoints;
|
|
// overlap is a ratio between area of keypoint regions intersection and
|
|
// area of keypoint regions union (now keypoint region is circle)
|
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
|
|
|
|
Point2f pt; // coordinates of the keypoints
|
|
float size; // diameter of the meaningfull keypoint neighborhood
|
|
float angle; // computed orientation of the keypoint (-1 if not applicable)
|
|
float response; // the response by which the most strong keypoints
|
|
// have been selected. Can be used for the further sorting
|
|
// or subsampling
|
|
int octave; // octave (pyramid layer) from which the keypoint has been extracted
|
|
int class_id; // object class (if the keypoints need to be clustered by
|
|
// an object they belong to)
|
|
};
|
|
|
|
// writes vector of keypoints to the file storage
|
|
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
|
|
// reads vector of keypoints from the specified file storage node
|
|
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
|
|
|
|
|
|
.. index:: FeatureDetector
|
|
|
|
.. _FeatureDetector:
|
|
|
|
FeatureDetector
|
|
---------------
|
|
.. c:type:: FeatureDetector
|
|
|
|
Abstract base class for 2D image feature detectors. ::
|
|
|
|
class CV_EXPORTS FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~FeatureDetector();
|
|
|
|
void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
void detect( const vector<Mat>& images,
|
|
vector<vector<KeyPoint> >& keypoints,
|
|
const vector<Mat>& masks=vector<Mat>() ) const;
|
|
|
|
virtual void read(const FileNode&);
|
|
virtual void write(FileStorage&) const;
|
|
|
|
static Ptr<FeatureDetector> create( const string& detectorType );
|
|
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: FeatureDetector::detect
|
|
|
|
FeatureDetector::detect
|
|
---------------------------
|
|
.. c:function:: void FeatureDetector::detect( const Mat\& image, vector<KeyPoint>\& keypoints, const Mat\& mask=Mat() ) const
|
|
|
|
Detect keypoints in an image (first variant) or image set (second variant).
|
|
|
|
:param image: The image.
|
|
|
|
:param keypoints: The detected keypoints.
|
|
|
|
:param mask: Mask specifying where to look for keypoints (optional). Must be a char matrix
|
|
with non-zero values in the region of interest.
|
|
|
|
.. c:function:: void FeatureDetector::detect( const vector<Mat>\& images, vector<vector<KeyPoint> >\& keypoints, const vector<Mat>\& masks=vector<Mat>() ) const
|
|
|
|
* **images** Images set.
|
|
|
|
* **keypoints** Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
|
|
|
|
* **masks** Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
|
|
Each element of ``masks`` vector must be a char matrix with non-zero values in the region of interest.
|
|
|
|
.. index:: FeatureDetector::read
|
|
|
|
FeatureDetector::read
|
|
-------------------------
|
|
.. c:function:: void FeatureDetector::read( const FileNode\& fn )
|
|
|
|
Read feature detector object from file node.
|
|
|
|
:param fn: File node from which detector will be read.
|
|
|
|
.. index:: FeatureDetector::write
|
|
|
|
FeatureDetector::write
|
|
--------------------------
|
|
.. c:function:: void FeatureDetector::write( FileStorage\& fs ) const
|
|
|
|
Write feature detector object to file storage.
|
|
|
|
:param fs: File storage in which detector will be written.
|
|
|
|
.. index:: FeatureDetector::create
|
|
|
|
FeatureDetector::create
|
|
---------------------------
|
|
:func:`FeatureDetector`
|
|
.. c:function:: Ptr<FeatureDetector> FeatureDetector::create( const string\& detectorType )
|
|
|
|
Feature detector factory that creates of given type with default parameters (rather using default constructor).
|
|
|
|
:param detectorType: Feature detector type.
|
|
|
|
Now the following detector types are supported:
|
|
\ ``"FAST"`` --
|
|
:func:`FastFeatureDetector`,\ ``"STAR"`` --
|
|
:func:`StarFeatureDetector`,\ ``"SIFT"`` --
|
|
:func:`SiftFeatureDetector`,\ ``"SURF"`` --
|
|
:func:`SurfFeatureDetector`,\ ``"MSER"`` --
|
|
:func:`MserFeatureDetector`,\ ``"GFTT"`` --
|
|
:func:`GfttFeatureDetector`,\ ``"HARRIS"`` --
|
|
:func:`HarrisFeatureDetector` .
|
|
\
|
|
Also combined format is supported: feature detector adapter name ( ``"Grid"`` --
|
|
:func:`GridAdaptedFeatureDetector`,``"Pyramid"`` --
|
|
:func:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
|
|
e.g. ``"GridFAST"``,``"PyramidSTAR"`` , etc.
|
|
|
|
.. index:: FastFeatureDetector
|
|
|
|
.. _FastFeatureDetector:
|
|
|
|
FastFeatureDetector
|
|
-------------------
|
|
.. c:type:: FastFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`FAST` method. ::
|
|
|
|
class FastFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: GoodFeaturesToTrackDetector
|
|
|
|
.. _GoodFeaturesToTrackDetector:
|
|
|
|
GoodFeaturesToTrackDetector
|
|
---------------------------
|
|
.. c:type:: GoodFeaturesToTrackDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`goodFeaturesToTrack` function. ::
|
|
|
|
class GoodFeaturesToTrackDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
class Params
|
|
{
|
|
public:
|
|
Params( int maxCorners=1000, double qualityLevel=0.01,
|
|
double minDistance=1., int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
void read( const FileNode& fn );
|
|
void write( FileStorage& fs ) const;
|
|
|
|
int maxCorners;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
int blockSize;
|
|
bool useHarrisDetector;
|
|
double k;
|
|
};
|
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
|
|
GoodFeaturesToTrackDetector::Params() );
|
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
|
|
double minDistance, int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: MserFeatureDetector
|
|
|
|
.. _MserFeatureDetector:
|
|
|
|
MserFeatureDetector
|
|
-------------------
|
|
.. c:type:: MserFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`MSER` class. ::
|
|
|
|
class MserFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
|
|
MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
double maxVariation, double minDiversity,
|
|
int maxEvolution, double areaThreshold,
|
|
double minMargin, int edgeBlurSize );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: StarFeatureDetector
|
|
|
|
.. _StarFeatureDetector:
|
|
|
|
StarFeatureDetector
|
|
-------------------
|
|
.. c:type:: StarFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`StarDetector` class. ::
|
|
|
|
class StarFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
|
|
int lineThresholdProjected = 10,
|
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SiftFeatureDetector
|
|
|
|
.. _SiftFeatureDetector:
|
|
|
|
SiftFeatureDetector
|
|
-------------------
|
|
.. c:type:: SiftFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`SIFT` class. ::
|
|
|
|
class SiftFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SiftFeatureDetector(
|
|
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
|
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
|
|
SiftFeatureDetector( double threshold, double edgeThreshold,
|
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SurfFeatureDetector
|
|
|
|
.. _SurfFeatureDetector:
|
|
|
|
SurfFeatureDetector
|
|
-------------------
|
|
.. c:type:: SurfFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`SURF` class. ::
|
|
|
|
class SurfFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
|
|
int octaveLayers = 4 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: GridAdaptedFeatureDetector
|
|
|
|
.. _GridAdaptedFeatureDetector:
|
|
|
|
GridAdaptedFeatureDetector
|
|
--------------------------
|
|
.. c:type:: GridAdaptedFeatureDetector
|
|
|
|
Adapts a detector to partition the source image into a grid and detect points in each cell. ::
|
|
|
|
class GridAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
/*
|
|
* detector Detector that will be adapted.
|
|
* maxTotalKeypoints Maximum count of keypoints detected on the image.
|
|
* Only the strongest keypoints will be keeped.
|
|
* gridRows Grid rows count.
|
|
* gridCols Grid column count.
|
|
*/
|
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int maxTotalKeypoints, int gridRows=4,
|
|
int gridCols=4 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: PyramidAdaptedFeatureDetector
|
|
|
|
.. _PyramidAdaptedFeatureDetector:
|
|
|
|
PyramidAdaptedFeatureDetector
|
|
-----------------------------
|
|
.. c:type:: PyramidAdaptedFeatureDetector
|
|
|
|
Adapts a detector to detect points over multiple levels of a Gaussian pyramid. Useful for detectors that are not inherently scaled. ::
|
|
|
|
class PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int levels=2 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: DynamicAdaptedFeatureDetector
|
|
|
|
DynamicAdaptedFeatureDetector
|
|
-----------------------------
|
|
|
|
.. c:type:: DynamicAdaptedFeatureDetector
|
|
|
|
An adaptively adjusting detector that iteratively detects until the desired number of features are found. ::
|
|
|
|
class DynamicAdaptedFeatureDetector: public FeatureDetector
|
|
{
|
|
public:
|
|
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster,
|
|
int min_features=400, int max_features=500, int max_iters=5 );
|
|
...
|
|
};
|
|
|
|
If the detector is persisted, it will "remember" the parameters
|
|
used on the last detection. In this way, the detector may be used for consistent numbers
|
|
of keypoints in a sets of images that are temporally related such as video streams or
|
|
panorama series.
|
|
|
|
The DynamicAdaptedFeatureDetector uses another detector such as FAST or SURF to do the dirty work,
|
|
with the help of an AdjusterAdapter.
|
|
After a detection, and an unsatisfactory number of features are detected,
|
|
the AdjusterAdapter will adjust the detection parameters so that the next detection will
|
|
result in more or less features. This is repeated until either the number of desired features are found
|
|
or the parameters are maxed out.
|
|
|
|
Adapters can easily be implemented for any detector via the
|
|
AdjusterAdapter interface.
|
|
|
|
Beware that this is not thread safe - as the adjustment of parameters breaks the const
|
|
of the detection routine...
|
|
|
|
Here is a sample of how to create a DynamicAdaptedFeatureDetector. ::
|
|
|
|
//sample usage:
|
|
//will create a detector that attempts to find
|
|
//100 - 110 FAST Keypoints, and will at most run
|
|
//FAST feature detection 10 times until that
|
|
//number of keypoints are found
|
|
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
|
|
new FastAdjuster(20,true)));
|
|
|
|
|
|
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
|
|
|
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
|
----------------------------------------------------------------
|
|
.. c:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>\& adjaster, int min_features, int max_features, int max_iters )
|
|
|
|
DynamicAdaptedFeatureDetector constructor.
|
|
|
|
:param adjaster: An :func:`AdjusterAdapter` that will do the detection and parameter
|
|
adjustment
|
|
|
|
:param min_features: This minimum desired number features.
|
|
|
|
:param max_features: The maximum desired number of features.
|
|
|
|
:param max_iters: The maximum number of times to try to adjust the feature detector parameters. For the :func:`FastAdjuster` this number can be high,
|
|
but with Star or Surf, many iterations can get time consuming. At each iteration the detector is rerun, so keep this in mind when choosing this value.
|
|
|
|
.. index:: AdjusterAdapter
|
|
|
|
AdjusterAdapter
|
|
---------------
|
|
|
|
.. c:type:: AdjusterAdapter
|
|
|
|
A feature detector parameter adjuster interface, this is used by the :func:`DynamicAdaptedFeatureDetector` and is a wrapper for :func:`FeatureDetecto` r that allow them to be adjusted after a detection. ::
|
|
|
|
class AdjusterAdapter: public FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~AdjusterAdapter() {}
|
|
virtual void tooFew(int min, int n_detected) = 0;
|
|
virtual void tooMany(int max, int n_detected) = 0;
|
|
virtual bool good() const = 0;
|
|
};
|
|
|
|
|
|
See
|
|
:func:`FastAdjuster`,:func:`StarAdjuster`,:func:`SurfAdjuster` for concrete implementations.
|
|
|
|
|
|
.. index:: AdjusterAdapter::tooFew
|
|
|
|
AdjusterAdapter::tooFew
|
|
---------------------------
|
|
.. c:function:: virtual void tooFew(int min, int n_detected) = 0
|
|
|
|
Too few features were detected so, adjust the detector parameters accordingly - so that the next detection detects more features.
|
|
|
|
:param min: This minimum desired number features.
|
|
|
|
:param n_detected: The actual number detected last run.
|
|
|
|
An example implementation of this is ::
|
|
|
|
void FastAdjuster::tooFew(int min, int n_detected)
|
|
{
|
|
thresh_--;
|
|
}
|
|
|
|
|
|
.. index:: AdjusterAdapter::tooMany
|
|
|
|
AdjusterAdapter::tooMany
|
|
----------------------------
|
|
.. c:function:: virtual void tooMany(int max, int n_detected) = 0
|
|
|
|
Too many features were detected so, adjust the detector parameters accordingly - so that the next detection detects less features.
|
|
|
|
:param max: This maximum desired number features.
|
|
|
|
:param n_detected: The actual number detected last run.
|
|
|
|
An example implementation of this is ::
|
|
|
|
void FastAdjuster::tooMany(int min, int n_detected)
|
|
{
|
|
thresh_++;
|
|
}
|
|
|
|
|
|
.. index:: AdjusterAdapter::good
|
|
|
|
AdjusterAdapter::good
|
|
-------------------------
|
|
.. c:function:: virtual bool good() const = 0
|
|
|
|
Are params maxed out or still valid? Returns false if the parameters can't be adjusted any more. An example implementation of this is ::
|
|
|
|
bool FastAdjuster::good() const
|
|
{
|
|
return (thresh_ > 1) && (thresh_ < 200);
|
|
}
|
|
|
|
|
|
.. index:: FastAdjuster
|
|
|
|
FastAdjuster
|
|
------------
|
|
|
|
.. c:type:: FastAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`FastFeatureDetector`. This will basically decrement or increment the threshhold by 1 ::
|
|
|
|
class FastAdjuster FastAdjuster: public AdjusterAdapter
|
|
{
|
|
public:
|
|
FastAdjuster(int init_thresh = 20, bool nonmax = true);
|
|
...
|
|
};
|
|
|
|
.. index:: StarAdjuster
|
|
|
|
StarAdjuster
|
|
------------
|
|
|
|
.. c:type:: StarAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`StarFeatureDetector` . This adjusts the responseThreshhold of StarFeatureDetector. ::
|
|
|
|
class StarAdjuster: public AdjusterAdapter
|
|
{
|
|
StarAdjuster(double initial_thresh = 30.0);
|
|
...
|
|
};
|
|
|
|
.. index:: SurfAdjuster
|
|
|
|
SurfAdjuster
|
|
------------
|
|
|
|
.. c:type:: SurfAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`SurfFeatureDetector` . This adjusts the hessianThreshold of SurfFeatureDetector. ::
|
|
|
|
class SurfAdjuster: public SurfAdjuster
|
|
{
|
|
SurfAdjuster();
|
|
...
|
|
};
|
|
|
|
.. index:: FeatureDetector
|
|
|
|
FeatureDetector
|
|
---------------
|
|
.. c:type:: FeatureDetector
|
|
|
|
Abstract base class for 2D image feature detectors. ::
|
|
|
|
class CV_EXPORTS FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~FeatureDetector();
|
|
|
|
void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
void detect( const vector<Mat>& images,
|
|
vector<vector<KeyPoint> >& keypoints,
|
|
const vector<Mat>& masks=vector<Mat>() ) const;
|
|
|
|
virtual void read(const FileNode&);
|
|
virtual void write(FileStorage&) const;
|
|
|
|
static Ptr<FeatureDetector> create( const string& detectorType );
|
|
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: FeatureDetector::detect
|
|
|
|
FeatureDetector::detect
|
|
---------------------------
|
|
.. c:function:: void FeatureDetector::detect( const Mat\& image, vector<KeyPoint>\& keypoints, const Mat\& mask=Mat() ) const
|
|
|
|
Detect keypoints in an image (first variant) or image set (second variant).
|
|
|
|
:param image: The image.
|
|
|
|
:param keypoints: The detected keypoints.
|
|
|
|
:param mask: Mask specifying where to look for keypoints (optional). Must be a char matrix
|
|
with non-zero values in the region of interest.
|
|
|
|
.. c:function:: void FeatureDetector::detect( const vector<Mat>\& images, vector<vector<KeyPoint> >\& keypoints, const vector<Mat>\& masks=vector<Mat>() ) const
|
|
|
|
* **images** Images set.
|
|
|
|
* **keypoints** Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
|
|
|
|
* **masks** Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
|
|
Each element of ``masks`` vector must be a char matrix with non-zero values in the region of interest.
|
|
|
|
.. index:: FeatureDetector::read
|
|
|
|
FeatureDetector::read
|
|
-------------------------
|
|
.. c:function:: void FeatureDetector::read( const FileNode\& fn )
|
|
|
|
Read feature detector object from file node.
|
|
|
|
:param fn: File node from which detector will be read.
|
|
|
|
.. index:: FeatureDetector::write
|
|
|
|
FeatureDetector::write
|
|
--------------------------
|
|
.. c:function:: void FeatureDetector::write( FileStorage\& fs ) const
|
|
|
|
Write feature detector object to file storage.
|
|
|
|
:param fs: File storage in which detector will be written.
|
|
|
|
.. index:: FeatureDetector::create
|
|
|
|
FeatureDetector::create
|
|
---------------------------
|
|
:func:`FeatureDetector`
|
|
.. c:function:: Ptr<FeatureDetector> FeatureDetector::create( const string\& detectorType )
|
|
|
|
Feature detector factory that creates of given type with default parameters (rather using default constructor).
|
|
|
|
:param detectorType: Feature detector type.
|
|
|
|
Now the following detector types are supported:
|
|
* ``"FAST"`` -- :func:`FastFeatureDetector`,
|
|
* ``"STAR"`` -- :func:`StarFeatureDetector`,
|
|
* ``"SIFT"`` -- :func:`SiftFeatureDetector`,
|
|
* ``"SURF"`` -- :func:`SurfFeatureDetector`,
|
|
* ``"MSER"`` -- :func:`MserFeatureDetector`,
|
|
* ``"GFTT"`` -- :func:`GfttFeatureDetector`,
|
|
* ``"HARRIS"`` -- :func:`HarrisFeatureDetector` .
|
|
|
|
Also combined format is supported: feature detector adapter name ( ``"Grid"`` --
|
|
:func:`GridAdaptedFeatureDetector`,``"Pyramid"`` --
|
|
:func:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
|
|
e.g. ``"GridFAST"``,``"PyramidSTAR"`` , etc.
|
|
|
|
.. index:: FastFeatureDetector
|
|
|
|
FastFeatureDetector
|
|
-------------------
|
|
.. c:type:: FastFeatureDetector
|
|
|
|
Wrapping class for feature detection using
|
|
:func:`FAST` method. ::
|
|
|
|
class FastFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: GoodFeaturesToTrackDetector
|
|
|
|
GoodFeaturesToTrackDetector
|
|
---------------------------
|
|
.. c:type:: GoodFeaturesToTrackDetector
|
|
|
|
Wrapping class for feature detection using :func:`goodFeaturesToTrack` function. ::
|
|
|
|
class GoodFeaturesToTrackDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
class Params
|
|
{
|
|
public:
|
|
Params( int maxCorners=1000, double qualityLevel=0.01,
|
|
double minDistance=1., int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
void read( const FileNode& fn );
|
|
void write( FileStorage& fs ) const;
|
|
|
|
int maxCorners;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
int blockSize;
|
|
bool useHarrisDetector;
|
|
double k;
|
|
};
|
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
|
|
GoodFeaturesToTrackDetector::Params() );
|
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
|
|
double minDistance, int blockSize=3,
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: MserFeatureDetector
|
|
|
|
MserFeatureDetector
|
|
-------------------
|
|
.. c:type:: MserFeatureDetector
|
|
|
|
Wrapping class for feature detection using :func:`MSER` class. ::
|
|
|
|
class MserFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
|
|
MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
double maxVariation, double minDiversity,
|
|
int maxEvolution, double areaThreshold,
|
|
double minMargin, int edgeBlurSize );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: StarFeatureDetector
|
|
|
|
StarFeatureDetector
|
|
-------------------
|
|
.. c:type:: StarFeatureDetector
|
|
|
|
Wrapping class for feature detection using :func:`StarDetector` class. ::
|
|
|
|
class StarFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
|
|
int lineThresholdProjected = 10,
|
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SiftFeatureDetector
|
|
|
|
SiftFeatureDetector
|
|
-------------------
|
|
.. c:type:: SiftFeatureDetector
|
|
|
|
Wrapping class for feature detection using :func:`SIFT` class. ::
|
|
|
|
class SiftFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SiftFeatureDetector(
|
|
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
|
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
|
|
SiftFeatureDetector( double threshold, double edgeThreshold,
|
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SurfFeatureDetector
|
|
|
|
SurfFeatureDetector
|
|
-------------------
|
|
.. c:type:: SurfFeatureDetector
|
|
|
|
Wrapping class for feature detection using :func:`SURF` class. ::
|
|
|
|
class SurfFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
|
|
int octaveLayers = 4 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: GridAdaptedFeatureDetector
|
|
|
|
GridAdaptedFeatureDetector
|
|
--------------------------
|
|
.. c:type:: GridAdaptedFeatureDetector
|
|
|
|
Adapts a detector to partition the source image into a grid and detect points in each cell. ::
|
|
|
|
class GridAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
/*
|
|
* detector Detector that will be adapted.
|
|
* maxTotalKeypoints Maximum count of keypoints detected on the image.
|
|
* Only the strongest keypoints will be keeped.
|
|
* gridRows Grid rows count.
|
|
* gridCols Grid column count.
|
|
*/
|
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int maxTotalKeypoints, int gridRows=4,
|
|
int gridCols=4 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: PyramidAdaptedFeatureDetector
|
|
|
|
PyramidAdaptedFeatureDetector
|
|
-----------------------------
|
|
.. c:type:: PyramidAdaptedFeatureDetector
|
|
|
|
Adapts a detector to detect points over multiple levels of a Gaussian pyramid. Useful for detectors that are not inherently scaled. ::
|
|
|
|
class PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int levels=2 );
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
protected:
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: DynamicAdaptedFeatureDetector
|
|
|
|
DynamicAdaptedFeatureDetector
|
|
-----------------------------
|
|
|
|
.. c:type:: DynamicAdaptedFeatureDetector
|
|
|
|
An adaptively adjusting detector that iteratively detects until the desired number of features are found. ::
|
|
|
|
class DynamicAdaptedFeatureDetector: public FeatureDetector
|
|
{
|
|
public:
|
|
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster,
|
|
int min_features=400, int max_features=500, int max_iters=5 );
|
|
...
|
|
};
|
|
|
|
|
|
If the detector is persisted, it will "remember" the parameters
|
|
used on the last detection. In this way, the detector may be used for consistent numbers
|
|
of keypoints in a sets of images that are temporally related such as video streams or
|
|
panorama series.
|
|
|
|
The DynamicAdaptedFeatureDetector uses another detector such as FAST or SURF to do the dirty work,
|
|
with the help of an AdjusterAdapter.
|
|
After a detection, and an unsatisfactory number of features are detected,
|
|
the AdjusterAdapter will adjust the detection parameters so that the next detection will
|
|
result in more or less features. This is repeated until either the number of desired features are found
|
|
or the parameters are maxed out.
|
|
|
|
Adapters can easily be implemented for any detector via the
|
|
AdjusterAdapter interface.
|
|
|
|
Beware that this is not thread safe - as the adjustment of parameters breaks the const
|
|
of the detection routine...
|
|
|
|
Here is a sample of how to create a DynamicAdaptedFeatureDetector. ::
|
|
|
|
//sample usage:
|
|
//will create a detector that attempts to find
|
|
//100 - 110 FAST Keypoints, and will at most run
|
|
//FAST feature detection 10 times until that
|
|
//number of keypoints are found
|
|
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
|
|
new FastAdjuster(20,true)));
|
|
|
|
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
|
|
|
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
|
|
----------------------------------------------------------------
|
|
.. c:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>\& adjaster, int min_features, int max_features, int max_iters )
|
|
|
|
DynamicAdaptedFeatureDetector constructor.
|
|
|
|
:param adjaster: An :func:`AdjusterAdapter` that will do the detection and parameter
|
|
adjustment
|
|
|
|
:param min_features: This minimum desired number features.
|
|
|
|
:param max_features: The maximum desired number of features.
|
|
|
|
:param max_iters: The maximum number of times to try to adjust the feature detector parameters. For the :func:`FastAdjuster` this number can be high,
|
|
but with Star or Surf, many iterations can get time consuming. At each iteration the detector is rerun, so keep this in mind when choosing this value.
|
|
|
|
.. index:: AdjusterAdapter
|
|
|
|
AdjusterAdapter
|
|
---------------
|
|
|
|
.. c:type:: AdjusterAdapter
|
|
|
|
A feature detector parameter adjuster interface, this is used by the :func:`DynamicAdaptedFeatureDetector` and is a wrapper for :func:`FeatureDetecto` r that allow them to be adjusted after a detection. ::
|
|
|
|
class AdjusterAdapter: public FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~AdjusterAdapter() {}
|
|
virtual void tooFew(int min, int n_detected) = 0;
|
|
virtual void tooMany(int max, int n_detected) = 0;
|
|
virtual bool good() const = 0;
|
|
};
|
|
|
|
See
|
|
:func:`FastAdjuster`,:func:`StarAdjuster`,:func:`SurfAdjuster` for concrete implementations.
|
|
|
|
.. index:: AdjusterAdapter::tooFew
|
|
|
|
AdjusterAdapter::tooFew
|
|
---------------------------
|
|
.. c:function:: virtual void tooFew(int min, int n_detected) = 0
|
|
|
|
Too few features were detected so, adjust the detector parameters accordingly - so that the next detection detects more features.
|
|
|
|
:param min: This minimum desired number features.
|
|
|
|
:param n_detected: The actual number detected last run.
|
|
|
|
An example implementation of this is ::
|
|
|
|
void FastAdjuster::tooFew(int min, int n_detected)
|
|
{
|
|
thresh_--;
|
|
}
|
|
|
|
|
|
.. index:: AdjusterAdapter::tooMany
|
|
|
|
AdjusterAdapter::tooMany
|
|
----------------------------
|
|
.. c:function:: virtual void tooMany(int max, int n_detected) = 0
|
|
|
|
Too many features were detected so, adjust the detector parameters accordingly - so that the next detection detects less features.
|
|
|
|
:param max: This maximum desired number features.
|
|
|
|
:param n_detected: The actual number detected last run.
|
|
|
|
An example implementation of this is ::
|
|
|
|
void FastAdjuster::tooMany(int min, int n_detected)
|
|
{
|
|
thresh_++;
|
|
}
|
|
|
|
|
|
.. index:: AdjusterAdapter::good
|
|
|
|
AdjusterAdapter::good
|
|
-------------------------
|
|
.. c:function:: virtual bool good() const = 0
|
|
|
|
Are params maxed out or still valid? Returns false if the parameters can't be adjusted any more. An example implementation of this is ::
|
|
|
|
bool FastAdjuster::good() const
|
|
{
|
|
return (thresh > 1) && (thresh < 200);
|
|
}
|
|
|
|
.. index:: FastAdjuster
|
|
|
|
FastAdjuster
|
|
------------
|
|
|
|
.. c:type:: FastAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`FastFeatureDetector`. This will basically decrement or increment the threshhold by 1 ::
|
|
|
|
class FastAdjuster FastAdjuster: public AdjusterAdapter
|
|
{
|
|
public:
|
|
FastAdjuster(int init_thresh = 20, bool nonmax = true);
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: StarAdjuster
|
|
|
|
StarAdjuster
|
|
------------
|
|
|
|
.. c:type:: StarAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`StarFeatureDetector` . This adjusts the responseThreshhold of StarFeatureDetector. ::
|
|
|
|
class StarAdjuster: public AdjusterAdapter
|
|
{
|
|
StarAdjuster(double initial_thresh = 30.0);
|
|
...
|
|
};
|
|
|
|
|
|
.. index:: SurfAdjuster
|
|
|
|
SurfAdjuster
|
|
------------
|
|
|
|
.. c:type:: SurfAdjuster
|
|
|
|
:func:`AdjusterAdapter` for the :func:`SurfFeatureDetector` . This adjusts the hessianThreshold of SurfFeatureDetector. ::
|
|
|
|
class SurfAdjuster: public SurfAdjuster
|
|
{
|
|
SurfAdjuster();
|
|
...
|
|
};
|
|
|
|
..
|
|
|