209 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHMATH_H
 | |
| #define INCLUDED_IMATHMATH_H
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| //
 | |
| //	ImathMath.h
 | |
| //
 | |
| //	This file contains template functions which call the double-
 | |
| //	precision math functions defined in math.h (sin(), sqrt(),
 | |
| //	exp() etc.), with specializations that call the faster
 | |
| //	single-precision versions (sinf(), sqrtf(), expf() etc.)
 | |
| //	when appropriate.
 | |
| //
 | |
| //	Example:
 | |
| //
 | |
| //	    double x = Math<double>::sqrt (3);	// calls ::sqrt(double);
 | |
| //	    float  y = Math<float>::sqrt (3);	// calls ::sqrtf(float);
 | |
| //
 | |
| //	When would I want to use this?
 | |
| //
 | |
| //	You may be writing a template which needs to call some function
 | |
| //	defined in math.h, for example to extract a square root, but you
 | |
| //	don't know whether to call the single- or the double-precision
 | |
| //	version of this function (sqrt() or sqrtf()):
 | |
| //
 | |
| //	    template <class T>
 | |
| //	    T
 | |
| //	    glorp (T x)
 | |
| //	    {
 | |
| //		return sqrt (x + 1);		// should call ::sqrtf(float)
 | |
| //	    }					// if x is a float, but we
 | |
| //						// don't know if it is
 | |
| //
 | |
| //	Using the templates in this file, you can make sure that
 | |
| //	the appropriate version of the math function is called:
 | |
| //
 | |
| //	    template <class T>
 | |
| //	    T
 | |
| //	    glorp (T x, T y)
 | |
| //	    {
 | |
| //		return Math<T>::sqrt (x + 1);	// calls ::sqrtf(float) if x
 | |
| //	    }					// is a float, ::sqrt(double)
 | |
| //	    					// otherwise
 | |
| //
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| #include "ImathPlatform.h"
 | |
| #include "ImathLimits.h"
 | |
| #include <math.h>
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| struct Math
 | |
| {
 | |
|    static T	acos  (T x)		{return ::acos (double(x));}
 | |
|    static T	asin  (T x)		{return ::asin (double(x));}
 | |
|    static T	atan  (T x)		{return ::atan (double(x));}
 | |
|    static T	atan2 (T x, T y)	{return ::atan2 (double(x), double(y));}
 | |
|    static T	cos   (T x)		{return ::cos (double(x));}
 | |
|    static T	sin   (T x)		{return ::sin (double(x));}
 | |
|    static T	tan   (T x)		{return ::tan (double(x));}
 | |
|    static T	cosh  (T x)		{return ::cosh (double(x));}
 | |
|    static T	sinh  (T x)		{return ::sinh (double(x));}
 | |
|    static T	tanh  (T x)		{return ::tanh (double(x));}
 | |
|    static T	exp   (T x)		{return ::exp (double(x));}
 | |
|    static T	log   (T x)		{return ::log (double(x));}
 | |
|    static T	log10 (T x)		{return ::log10 (double(x));}
 | |
|    static T	modf  (T x, T *iptr)
 | |
|    {
 | |
|         double ival;
 | |
|         T rval( ::modf (double(x),&ival));
 | |
|     *iptr = ival;
 | |
|     return rval;
 | |
|    }
 | |
|    static T	pow   (T x, T y)	{return ::pow (double(x), double(y));}
 | |
|    static T	sqrt  (T x)		{return ::sqrt (double(x));}
 | |
|    static T	ceil  (T x)		{return ::ceil (double(x));}
 | |
|    static T	fabs  (T x)		{return ::fabs (double(x));}
 | |
|    static T	floor (T x)		{return ::floor (double(x));}
 | |
|    static T	fmod  (T x, T y)	{return ::fmod (double(x), double(y));}
 | |
|    static T	hypot (T x, T y)	{return ::hypot (double(x), double(y));}
 | |
| };
 | |
| 
 | |
| 
 | |
| template <>
 | |
| struct Math<float>
 | |
| {
 | |
|    static float	acos  (float x)			{return ::acosf (x);}
 | |
|    static float	asin  (float x)			{return ::asinf (x);}
 | |
|    static float	atan  (float x)			{return ::atanf (x);}
 | |
|    static float	atan2 (float x, float y)	{return ::atan2f (x, y);}
 | |
|    static float	cos   (float x)			{return ::cosf (x);}
 | |
|    static float	sin   (float x)			{return ::sinf (x);}
 | |
|    static float	tan   (float x)			{return ::tanf (x);}
 | |
|    static float	cosh  (float x)			{return ::coshf (x);}
 | |
|    static float	sinh  (float x)			{return ::sinhf (x);}
 | |
|    static float	tanh  (float x)			{return ::tanhf (x);}
 | |
|    static float	exp   (float x)			{return ::expf (x);}
 | |
|    static float	log   (float x)			{return ::logf (x);}
 | |
|    static float	log10 (float x)			{return ::log10f (x);}
 | |
|    static float	modf  (float x, float *y)	{return ::modff (x, y);}
 | |
|    static float	pow   (float x, float y)	{return ::powf (x, y);}
 | |
|    static float	sqrt  (float x)			{return ::sqrtf (x);}
 | |
|    static float	ceil  (float x)			{return ::ceilf (x);}
 | |
|    static float	fabs  (float x)			{return ::fabsf (x);}
 | |
|    static float	floor (float x)			{return ::floorf (x);}
 | |
|    static float	fmod  (float x, float y)	{return ::fmodf (x, y);}
 | |
| #if !defined(_MSC_VER)
 | |
|    static float	hypot (float x, float y)	{return ::hypotf (x, y);}
 | |
| #else
 | |
|    static float hypot (float x, float y)	{return ::sqrtf(x*x + y*y);}
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| //--------------------------------------------------------------------------
 | |
| // Don Hatch's version of sin(x)/x, which is accurate for very small x.
 | |
| // Returns 1 for x == 0.
 | |
| //--------------------------------------------------------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| sinx_over_x (T x)
 | |
| {
 | |
|     if (x * x < limits<T>::epsilon())
 | |
|     return T (1);
 | |
|     else
 | |
|     return Math<T>::sin (x) / x;
 | |
| }
 | |
| 
 | |
| 
 | |
| //--------------------------------------------------------------------------
 | |
| // Compare two numbers and test if they are "approximately equal":
 | |
| //
 | |
| // equalWithAbsError (x1, x2, e)
 | |
| //
 | |
| //	Returns true if x1 is the same as x2 with an absolute error of
 | |
| //	no more than e,
 | |
| //
 | |
| //	abs (x1 - x2) <= e
 | |
| //
 | |
| // equalWithRelError (x1, x2, e)
 | |
| //
 | |
| //	Returns true if x1 is the same as x2 with an relative error of
 | |
| //	no more than e,
 | |
| //
 | |
| //	abs (x1 - x2) <= e * x1
 | |
| //
 | |
| //--------------------------------------------------------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline bool
 | |
| equalWithAbsError (T x1, T x2, T e)
 | |
| {
 | |
|     return ((x1 > x2)? x1 - x2: x2 - x1) <= e;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| inline bool
 | |
| equalWithRelError (T x1, T x2, T e)
 | |
| {
 | |
|     return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
