411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2011, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHFRUSTUMTEST_H
 | |
| #define INCLUDED_IMATHFRUSTUMTEST_H
 | |
| 
 | |
| //-------------------------------------------------------------------------
 | |
| //
 | |
| //      This file contains algorithms applied to or in conjunction with
 | |
| //	Frustum visibility testing (Imath::Frustum).
 | |
| //
 | |
| //	Methods for frustum-based rejection of primitives are contained here.
 | |
| //
 | |
| //-------------------------------------------------------------------------
 | |
| 
 | |
| #include "ImathFrustum.h"
 | |
| #include "ImathBox.h"
 | |
| #include "ImathSphere.h"
 | |
| #include "ImathMatrix.h"
 | |
| #include "ImathVec.h"
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| /////////////////////////////////////////////////////////////////
 | |
| // FrustumTest
 | |
| //
 | |
| //	template class FrustumTest<T>
 | |
| //
 | |
| // This is a helper class, designed to accelerate the case
 | |
| // where many tests are made against the same frustum.
 | |
| // That's a really common case.
 | |
| //
 | |
| // The acceleration is achieved by pre-computing the planes of
 | |
| // the frustum, along with the ablsolute values of the plane normals.
 | |
| //
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////
 | |
| // How to use this
 | |
| //
 | |
| // Given that you already have:
 | |
| //    Imath::Frustum   myFrustum
 | |
| //    IMath::Matrix44  myCameraWorldMatrix
 | |
| //
 | |
| // First, make a frustum test object:
 | |
| //    FrustumTest myFrustumTest(myFrustum, myCameraWorldMatrix)
 | |
| //
 | |
| // Whenever the camera or frustum changes, call:
 | |
| //    myFrustumTest.setFrustum(myFrustum, myCameraWorldMatrix)
 | |
| //
 | |
| // For each object you want to test for visibility, call:
 | |
| //    myFrustumTest.isVisible(myBox)
 | |
| //    myFrustumTest.isVisible(mySphere)
 | |
| //    myFrustumTest.isVisible(myVec3)
 | |
| //    myFrustumTest.completelyContains(myBox)
 | |
| //    myFrustumTest.completelyContains(mySphere)
 | |
| //
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////
 | |
| // Explanation of how it works
 | |
| //
 | |
| //
 | |
| // We store six world-space Frustum planes (nx, ny, nz, offset)
 | |
| //
 | |
| // Points: To test a Vec3 for visibility, test it against each plane
 | |
| //         using the normal (v dot n - offset) method. (the result is exact)
 | |
| //
 | |
| // BBoxes: To test an axis-aligned bbox, test the center against each plane
 | |
| //         using the normal (v dot n - offset) method, but offset by the
 | |
| //         box extents dot the abs of the plane normal. (the result is NOT
 | |
| //         exact, but will not return false-negatives.)
 | |
| //
 | |
| // Spheres: To test a sphere, test the center against each plane
 | |
| //         using the normal (v dot n - offset) method, but offset by the
 | |
| //         sphere's radius. (the result is NOT exact, but will not return
 | |
| //         false-negatives.)
 | |
| //
 | |
| //
 | |
| // SPECIAL NOTE: "Where are the dot products?"
 | |
| //     Actual dot products are currently slow for most SIMD architectures.
 | |
| //     In order to keep this code optimization-ready, the dot products
 | |
| //     are all performed using vector adds and multipies.
 | |
| //
 | |
| //     In order to do this, the plane equations are stored in "transpose"
 | |
| //     form, with the X components grouped into an X vector, etc.
 | |
| //
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| class FrustumTest
 | |
| {
 | |
| public:
 | |
|     FrustumTest()
 | |
|     {
 | |
|         Frustum<T>  frust;
 | |
|         Matrix44<T> cameraMat;
 | |
|         cameraMat.makeIdentity();
 | |
|         setFrustum(frust, cameraMat);
 | |
|     }
 | |
|     FrustumTest(Frustum<T> &frustum, const Matrix44<T> &cameraMat)
 | |
|     {
 | |
|         setFrustum(frustum, cameraMat);
 | |
|     }
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////
 | |
|     // setFrustum()
 | |
|     // This updates the frustum test with a new frustum and matrix.
 | |
|     // This should usually be called just once per frame.
 | |
|     void setFrustum(Frustum<T> &frustum, const Matrix44<T> &cameraMat);
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////
 | |
|     // isVisible()
 | |
|     // Check to see if shapes are visible.
 | |
|     bool isVisible(const Sphere3<T> &sphere) const;
 | |
|     bool isVisible(const Box<Vec3<T> > &box) const;
 | |
|     bool isVisible(const Vec3<T> &vec) const;
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////
 | |
|     // completelyContains()
 | |
|     // Check to see if shapes are entirely contained.
 | |
|     bool completelyContains(const Sphere3<T> &sphere) const;
 | |
|     bool completelyContains(const Box<Vec3<T> > &box) const;
 | |
| 
 | |
|     // These next items are kept primarily for debugging tools.
 | |
|     // It's useful for drawing the culling environment, and also
 | |
|     // for getting an "outside view" of the culling frustum.
 | |
|     Imath::Matrix44<T> cameraMat() const {return cameraMatrix;}
 | |
|     Imath::Frustum<T> currentFrustum() const {return currFrustum;}
 | |
| 
 | |
| protected:
 | |
|     // To understand why the planes are stored this way, see
 | |
|     // the SPECIAL NOTE above.
 | |
|     Vec3<T> planeNormX[2];  // The X compunents from 6 plane equations
 | |
|     Vec3<T> planeNormY[2];  // The Y compunents from 6 plane equations
 | |
|     Vec3<T> planeNormZ[2];  // The Z compunents from 6 plane equations
 | |
| 
 | |
|     Vec3<T> planeOffsetVec[2]; // The distance offsets from 6 plane equations
 | |
| 
 | |
|     // The absolute values are stored to assist with bounding box tests.
 | |
|     Vec3<T> planeNormAbsX[2];  // The abs(X) compunents from 6 plane equations
 | |
|     Vec3<T> planeNormAbsY[2];  // The abs(X) compunents from 6 plane equations
 | |
|     Vec3<T> planeNormAbsZ[2];  // The abs(X) compunents from 6 plane equations
 | |
| 
 | |
|     // These are kept primarily for debugging tools.
 | |
|     Frustum<T> currFrustum;
 | |
|     Matrix44<T> cameraMatrix;
 | |
| };
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // setFrustum()
 | |
| // This should usually only be called once per frame, or however
 | |
| // often the camera moves.
 | |
| template<class T>
 | |
| void FrustumTest<T>::setFrustum(Frustum<T> &frustum,
 | |
|                                 const Matrix44<T> &cameraMat)
 | |
| {
 | |
|     Plane3<T> frustumPlanes[6];
 | |
|     frustum.planes(frustumPlanes, cameraMat);
 | |
| 
 | |
|     // Here's where we effectively transpose the plane equations.
 | |
|     // We stuff all six X's into the two planeNormX vectors, etc.
 | |
|     for (int i = 0; i < 2; ++i)
 | |
|     {
 | |
|         int index = i * 3;
 | |
| 
 | |
|         planeNormX[i]     = Vec3<T>(frustumPlanes[index + 0].normal.x,
 | |
|                                     frustumPlanes[index + 1].normal.x,
 | |
|                                     frustumPlanes[index + 2].normal.x);
 | |
|         planeNormY[i]     = Vec3<T>(frustumPlanes[index + 0].normal.y,
 | |
|                                     frustumPlanes[index + 1].normal.y,
 | |
|                                     frustumPlanes[index + 2].normal.y);
 | |
|         planeNormZ[i]     = Vec3<T>(frustumPlanes[index + 0].normal.z,
 | |
|                                     frustumPlanes[index + 1].normal.z,
 | |
|                                     frustumPlanes[index + 2].normal.z);
 | |
| 
 | |
|         planeNormAbsX[i]  = Vec3<T>(Imath::abs(planeNormX[i].x),
 | |
|                                     Imath::abs(planeNormX[i].y),
 | |
|                                     Imath::abs(planeNormX[i].z));
 | |
|         planeNormAbsY[i]  = Vec3<T>(Imath::abs(planeNormY[i].x),
 | |
|                                     Imath::abs(planeNormY[i].y),
 | |
|                                     Imath::abs(planeNormY[i].z));
 | |
|         planeNormAbsZ[i]  = Vec3<T>(Imath::abs(planeNormZ[i].x),
 | |
|                                     Imath::abs(planeNormZ[i].y),
 | |
|                                     Imath::abs(planeNormZ[i].z));
 | |
| 
 | |
|         planeOffsetVec[i] = Vec3<T>(frustumPlanes[index + 0].distance,
 | |
|                                     frustumPlanes[index + 1].distance,
 | |
|                                     frustumPlanes[index + 2].distance);
 | |
|     }
 | |
|     currFrustum = frustum;
 | |
|     cameraMatrix = cameraMat;
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // isVisible(Sphere)
 | |
| // Returns true if any part of the sphere is inside
 | |
| // the frustum.
 | |
| // The result MAY return close false-positives, but not false-negatives.
 | |
| //
 | |
| template<typename T>
 | |
| bool FrustumTest<T>::isVisible(const Sphere3<T> &sphere) const
 | |
| {
 | |
|     Vec3<T> center = sphere.center;
 | |
|     Vec3<T> radiusVec = Vec3<T>(sphere.radius, sphere.radius, sphere.radius);
 | |
| 
 | |
|     // This is a vertical dot-product on three vectors at once.
 | |
|     Vec3<T> d0  = planeNormX[0] * center.x
 | |
|                 + planeNormY[0] * center.y
 | |
|                 + planeNormZ[0] * center.z
 | |
|                 - radiusVec
 | |
|                 - planeOffsetVec[0];
 | |
| 
 | |
|     if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     Vec3<T> d1  = planeNormX[1] * center.x
 | |
|                 + planeNormY[1] * center.y
 | |
|                 + planeNormZ[1] * center.z
 | |
|                 - radiusVec
 | |
|                 - planeOffsetVec[1];
 | |
| 
 | |
|     if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // completelyContains(Sphere)
 | |
| // Returns true if every part of the sphere is inside
 | |
| // the frustum.
 | |
| // The result MAY return close false-negatives, but not false-positives.
 | |
| //
 | |
| template<typename T>
 | |
| bool FrustumTest<T>::completelyContains(const Sphere3<T> &sphere) const
 | |
| {
 | |
|     Vec3<T> center = sphere.center;
 | |
|     Vec3<T> radiusVec = Vec3<T>(sphere.radius, sphere.radius, sphere.radius);
 | |
| 
 | |
|     // This is a vertical dot-product on three vectors at once.
 | |
|     Vec3<T> d0  = planeNormX[0] * center.x
 | |
|                 + planeNormY[0] * center.y
 | |
|                 + planeNormZ[0] * center.z
 | |
|                 + radiusVec
 | |
|                 - planeOffsetVec[0];
 | |
| 
 | |
|     if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     Vec3<T> d1  = planeNormX[1] * center.x
 | |
|                 + planeNormY[1] * center.y
 | |
|                 + planeNormZ[1] * center.z
 | |
|                 + radiusVec
 | |
|                 - planeOffsetVec[1];
 | |
| 
 | |
|     if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // isVisible(Box)
 | |
| // Returns true if any part of the axis-aligned box
 | |
| // is inside the frustum.
 | |
| // The result MAY return close false-positives, but not false-negatives.
 | |
| //
 | |
| template<typename T>
 | |
| bool FrustumTest<T>::isVisible(const Box<Vec3<T> > &box) const
 | |
| {
 | |
|     Vec3<T> center = (box.min + box.max) / 2;
 | |
|     Vec3<T> extent = (box.max - center);
 | |
| 
 | |
|     // This is a vertical dot-product on three vectors at once.
 | |
|     Vec3<T> d0  = planeNormX[0] * center.x
 | |
|                 + planeNormY[0] * center.y
 | |
|                 + planeNormZ[0] * center.z
 | |
|                 - planeNormAbsX[0] * extent.x
 | |
|                 - planeNormAbsY[0] * extent.y
 | |
|                 - planeNormAbsZ[0] * extent.z
 | |
|                 - planeOffsetVec[0];
 | |
| 
 | |
|     if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     Vec3<T> d1  = planeNormX[1] * center.x
 | |
|                 + planeNormY[1] * center.y
 | |
|                 + planeNormZ[1] * center.z
 | |
|                 - planeNormAbsX[1] * extent.x
 | |
|                 - planeNormAbsY[1] * extent.y
 | |
|                 - planeNormAbsZ[1] * extent.z
 | |
|                 - planeOffsetVec[1];
 | |
| 
 | |
|     if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // completelyContains(Box)
 | |
| // Returns true if every part of the axis-aligned box
 | |
| // is inside the frustum.
 | |
| // The result MAY return close false-negatives, but not false-positives.
 | |
| //
 | |
| template<typename T>
 | |
| bool FrustumTest<T>::completelyContains(const Box<Vec3<T> > &box) const
 | |
| {
 | |
|     Vec3<T> center = (box.min + box.max) / 2;
 | |
|     Vec3<T> extent = (box.max - center);
 | |
| 
 | |
|     // This is a vertical dot-product on three vectors at once.
 | |
|     Vec3<T> d0  = planeNormX[0] * center.x
 | |
|                 + planeNormY[0] * center.y
 | |
|                 + planeNormZ[0] * center.z
 | |
|                 + planeNormAbsX[0] * extent.x
 | |
|                 + planeNormAbsY[0] * extent.y
 | |
|                 + planeNormAbsZ[0] * extent.z
 | |
|                 - planeOffsetVec[0];
 | |
| 
 | |
|     if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     Vec3<T> d1  = planeNormX[1] * center.x
 | |
|                 + planeNormY[1] * center.y
 | |
|                 + planeNormZ[1] * center.z
 | |
|                 + planeNormAbsX[1] * extent.x
 | |
|                 + planeNormAbsY[1] * extent.y
 | |
|                 + planeNormAbsZ[1] * extent.z
 | |
|                 - planeOffsetVec[1];
 | |
| 
 | |
|     if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////
 | |
| // isVisible(Vec3)
 | |
| // Returns true if the point is inside the frustum.
 | |
| //
 | |
| template<typename T>
 | |
| bool FrustumTest<T>::isVisible(const Vec3<T> &vec) const
 | |
| {
 | |
|     // This is a vertical dot-product on three vectors at once.
 | |
|     Vec3<T> d0  = (planeNormX[0] * vec.x)
 | |
|                 + (planeNormY[0] * vec.y)
 | |
|                 + (planeNormZ[0] * vec.z)
 | |
|                 - planeOffsetVec[0];
 | |
| 
 | |
|     if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     Vec3<T> d1  = (planeNormX[1] * vec.x)
 | |
|                 + (planeNormY[1] * vec.y)
 | |
|                 + (planeNormZ[1] * vec.z)
 | |
|                 - planeOffsetVec[1];
 | |
| 
 | |
|     if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0)
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef FrustumTest<float>	FrustumTestf;
 | |
| typedef FrustumTest<double> FrustumTestd;
 | |
| 
 | |
| } //namespace Imath
 | |
| 
 | |
| #endif
 | 
