709 lines
29 KiB
C++
709 lines
29 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>&) { throw_nogpu(); }
|
|
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::clear() { throw_nogpu(); }
|
|
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return true; }
|
|
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace gpu { namespace bfmatcher
|
|
{
|
|
template <typename T>
|
|
void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
template <typename T>
|
|
void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
template <typename T>
|
|
void matchSingleHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
template <typename T>
|
|
void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
template <typename T>
|
|
void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
template <typename T>
|
|
void matchCollectionHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
|
|
template <typename T>
|
|
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
|
|
template <typename T>
|
|
void knnMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
|
|
template <typename T>
|
|
void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
|
|
template <typename T>
|
|
void radiusMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
class ImgIdxSetter
|
|
{
|
|
public:
|
|
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
|
|
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
|
|
private:
|
|
int imgIdx;
|
|
};
|
|
}
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
|
|
{
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Train collection
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>& descCollection)
|
|
{
|
|
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end());
|
|
}
|
|
|
|
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const
|
|
{
|
|
return trainDescCollection;
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::clear()
|
|
{
|
|
trainDescCollection.clear();
|
|
}
|
|
|
|
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const
|
|
{
|
|
return trainDescCollection.empty();
|
|
}
|
|
|
|
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Match
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask, Stream& stream)
|
|
{
|
|
if (queryDescs.empty() || trainDescs.empty())
|
|
return;
|
|
|
|
using namespace cv::gpu::bfmatcher;
|
|
|
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
|
|
bool cc_12, cudaStream_t stream);
|
|
|
|
static const match_caller_t match_callers[3][8] =
|
|
{
|
|
{
|
|
matchSingleL1_gpu<unsigned char>, matchSingleL1_gpu<signed char>,
|
|
matchSingleL1_gpu<unsigned short>, matchSingleL1_gpu<short>,
|
|
matchSingleL1_gpu<int>, matchSingleL1_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
matchSingleL2_gpu<unsigned char>, matchSingleL2_gpu<signed char>,
|
|
matchSingleL2_gpu<unsigned short>, matchSingleL2_gpu<short>,
|
|
matchSingleL2_gpu<int>, matchSingleL2_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
matchSingleHamming_gpu<unsigned char>, matchSingleHamming_gpu<signed char>,
|
|
matchSingleHamming_gpu<unsigned short>, matchSingleHamming_gpu<short>,
|
|
matchSingleHamming_gpu<int>, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
|
|
CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type());
|
|
|
|
const int nQuery = queryDescs.rows;
|
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
|
|
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
|
|
|
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
|
CV_Assert(func != 0);
|
|
|
|
bool cc_12 = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
|
|
|
// For single train there is no need to save imgIdx, so we just save imgIdx to trainIdx.
|
|
// trainIdx store after imgIdx, so we doesn't lose it value.
|
|
func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance, cc_12, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
|
vector<DMatch>& matches)
|
|
{
|
|
if (trainIdx.empty() || distance.empty())
|
|
return;
|
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
|
|
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.cols == trainIdx.cols);
|
|
|
|
const int nQuery = trainIdx.cols;
|
|
|
|
Mat trainIdxCPU = trainIdx;
|
|
Mat distanceCPU = distance;
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
|
const float* distance_ptr = distanceCPU.ptr<float>();
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
|
|
{
|
|
int trainIdx = *trainIdx_ptr;
|
|
if (trainIdx == -1)
|
|
continue;
|
|
|
|
float distance = *distance_ptr;
|
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
|
|
|
matches.push_back(m);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
vector<DMatch>& matches, const GpuMat& mask)
|
|
{
|
|
GpuMat trainIdx, distance;
|
|
matchSingle(queryDescs, trainDescs, trainIdx, distance, mask);
|
|
matchDownload(trainIdx, distance, matches);
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
|
|
const vector<GpuMat>& masks)
|
|
{
|
|
if (empty())
|
|
return;
|
|
|
|
if (masks.empty())
|
|
{
|
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(DevMem2D)));
|
|
|
|
for (size_t i = 0; i < trainDescCollection.size(); ++i)
|
|
{
|
|
const GpuMat& trainDescs = trainDescCollection[i];
|
|
|
|
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
|
|
}
|
|
|
|
trainCollection.upload(trainCollectionCPU);
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(masks.size() == trainDescCollection.size());
|
|
|
|
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(DevMem2D)));
|
|
Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(PtrStep)));
|
|
|
|
for (size_t i = 0; i < trainDescCollection.size(); ++i)
|
|
{
|
|
const GpuMat& trainDescs = trainDescCollection[i];
|
|
const GpuMat& mask = masks[i];
|
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == trainDescs.rows));
|
|
|
|
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
|
|
|
|
maskCollectionCPU.ptr<PtrStep>(0)[i] = mask;
|
|
}
|
|
|
|
trainCollection.upload(trainCollectionCPU);
|
|
maskCollection.upload(maskCollectionCPU);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream)
|
|
{
|
|
if (queryDescs.empty() || trainCollection.empty())
|
|
return;
|
|
|
|
using namespace cv::gpu::bfmatcher;
|
|
|
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
|
const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
|
|
|
|
static const match_caller_t match_callers[3][8] =
|
|
{
|
|
{
|
|
matchCollectionL1_gpu<unsigned char>, matchCollectionL1_gpu<signed char>,
|
|
matchCollectionL1_gpu<unsigned short>, matchCollectionL1_gpu<short>,
|
|
matchCollectionL1_gpu<int>, matchCollectionL1_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
matchCollectionL2_gpu<unsigned char>, matchCollectionL2_gpu<signed char>,
|
|
matchCollectionL2_gpu<unsigned short>, matchCollectionL2_gpu<short>,
|
|
matchCollectionL2_gpu<int>, matchCollectionL2_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
matchCollectionHamming_gpu<unsigned char>, matchCollectionHamming_gpu<signed char>,
|
|
matchCollectionHamming_gpu<unsigned short>, matchCollectionHamming_gpu<short>,
|
|
matchCollectionHamming_gpu<int>, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
|
|
|
|
const int nQuery = queryDescs.rows;
|
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
|
|
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
|
|
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
|
|
|
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
|
CV_Assert(func != 0);
|
|
|
|
bool cc_12 = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
|
|
|
|
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc_12, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx,
|
|
const GpuMat& distance, vector<DMatch>& matches)
|
|
{
|
|
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
|
|
return;
|
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
|
|
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous() && imgIdx.cols == trainIdx.cols);
|
|
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && imgIdx.cols == trainIdx.cols);
|
|
|
|
const int nQuery = trainIdx.cols;
|
|
|
|
Mat trainIdxCPU = trainIdx;
|
|
Mat imgIdxCPU = imgIdx;
|
|
Mat distanceCPU = distance;
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
|
const int* imgIdx_ptr = imgIdxCPU.ptr<int>();
|
|
const float* distance_ptr = distanceCPU.ptr<float>();
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
|
|
{
|
|
int trainIdx = *trainIdx_ptr;
|
|
if (trainIdx == -1)
|
|
continue;
|
|
|
|
int imgIdx = *imgIdx_ptr;
|
|
|
|
float distance = *distance_ptr;
|
|
|
|
DMatch m(queryIdx, trainIdx, imgIdx, distance);
|
|
|
|
matches.push_back(m);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches,
|
|
const vector<GpuMat>& masks)
|
|
{
|
|
GpuMat trainCollection;
|
|
GpuMat maskCollection;
|
|
|
|
makeGpuCollection(trainCollection, maskCollection, masks);
|
|
|
|
GpuMat trainIdx, imgIdx, distance;
|
|
|
|
matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection);
|
|
matchDownload(trainIdx, imgIdx, distance, matches);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// KnnMatch
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask, Stream& stream)
|
|
{
|
|
if (queryDescs.empty() || trainDescs.empty())
|
|
return;
|
|
|
|
using namespace cv::gpu::bfmatcher;
|
|
|
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
|
|
|
|
static const match_caller_t match_callers[3][8] =
|
|
{
|
|
{
|
|
knnMatchL1_gpu<unsigned char>, knnMatchL1_gpu<signed char>, knnMatchL1_gpu<unsigned short>,
|
|
knnMatchL1_gpu<short>, knnMatchL1_gpu<int>, knnMatchL1_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
knnMatchL2_gpu<unsigned char>, knnMatchL2_gpu<signed char>, knnMatchL2_gpu<unsigned short>,
|
|
knnMatchL2_gpu<short>, knnMatchL2_gpu<int>, knnMatchL2_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
knnMatchHamming_gpu<unsigned char>, knnMatchHamming_gpu<signed char>, knnMatchHamming_gpu<unsigned short>,
|
|
knnMatchHamming_gpu<short>, knnMatchHamming_gpu<int>, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
|
|
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
|
|
|
|
const int nQuery = queryDescs.rows;
|
|
const int nTrain = trainDescs.rows;
|
|
|
|
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
|
|
ensureSizeIsEnough(nQuery, k, CV_32F, distance);
|
|
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
|
|
|
|
if (stream)
|
|
{
|
|
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
|
|
stream.enqueueMemSet(allDist, Scalar::all(numeric_limits<float>::max()));
|
|
}
|
|
else
|
|
{
|
|
trainIdx.setTo(Scalar::all(-1));
|
|
allDist.setTo(Scalar::all(numeric_limits<float>::max()));
|
|
}
|
|
|
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
|
CV_Assert(func != 0);
|
|
|
|
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
|
vector< vector<DMatch> >& matches, bool compactResult)
|
|
{
|
|
if (trainIdx.empty() || distance.empty())
|
|
return;
|
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1);
|
|
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
|
|
|
|
const int nQuery = distance.rows;
|
|
const int k = trainIdx.cols;
|
|
|
|
Mat trainIdxCPU = trainIdx;
|
|
Mat distanceCPU = distance;
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
|
{
|
|
matches.push_back(vector<DMatch>());
|
|
vector<DMatch>& curMatches = matches.back();
|
|
curMatches.reserve(k);
|
|
|
|
int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
|
float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
|
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
|
|
{
|
|
int trainIdx = *trainIdx_ptr;
|
|
|
|
if (trainIdx != -1)
|
|
{
|
|
float distance = *distance_ptr;
|
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
|
|
|
curMatches.push_back(m);
|
|
}
|
|
}
|
|
|
|
if (compactResult && curMatches.empty())
|
|
matches.pop_back();
|
|
}
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
vector< vector<DMatch> >& matches, int k, const GpuMat& mask, bool compactResult)
|
|
{
|
|
GpuMat trainIdx, distance, allDist;
|
|
knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask);
|
|
knnMatchDownload(trainIdx, distance, matches, compactResult);
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
|
|
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
|
|
{
|
|
if (queryDescs.empty() || empty())
|
|
return;
|
|
|
|
vector< vector<DMatch> > curMatches;
|
|
vector<DMatch> temp;
|
|
temp.reserve(2 * knn);
|
|
|
|
matches.resize(queryDescs.rows);
|
|
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), knn));
|
|
|
|
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
|
|
{
|
|
knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn,
|
|
masks.empty() ? GpuMat() : masks[imgIdx]);
|
|
|
|
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
|
|
{
|
|
vector<DMatch>& localMatch = curMatches[queryIdx];
|
|
vector<DMatch>& globalMatch = matches[queryIdx];
|
|
|
|
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
|
|
|
|
temp.clear();
|
|
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
|
|
|
|
globalMatch.clear();
|
|
const size_t count = std::min((size_t)knn, temp.size());
|
|
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
|
|
}
|
|
}
|
|
|
|
if (compactResult)
|
|
{
|
|
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
|
mem_fun_ref(&vector<DMatch>::empty));
|
|
matches.erase(new_end, matches.end());
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// RadiusMatch
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask, Stream& stream)
|
|
{
|
|
if (queryDescs.empty() || trainDescs.empty())
|
|
return;
|
|
|
|
using namespace cv::gpu::bfmatcher;
|
|
|
|
typedef void (*radiusMatch_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
|
|
|
|
static const radiusMatch_caller_t radiusMatch_callers[3][8] =
|
|
{
|
|
{
|
|
radiusMatchL1_gpu<unsigned char>, radiusMatchL1_gpu<signed char>, radiusMatchL1_gpu<unsigned short>,
|
|
radiusMatchL1_gpu<short>, radiusMatchL1_gpu<int>, radiusMatchL1_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
radiusMatchL2_gpu<unsigned char>, radiusMatchL2_gpu<signed char>, radiusMatchL2_gpu<unsigned short>,
|
|
radiusMatchL2_gpu<short>, radiusMatchL2_gpu<int>, radiusMatchL2_gpu<float>, 0, 0
|
|
},
|
|
{
|
|
radiusMatchHamming_gpu<unsigned char>, radiusMatchHamming_gpu<signed char>, radiusMatchHamming_gpu<unsigned short>,
|
|
radiusMatchHamming_gpu<short>, radiusMatchHamming_gpu<int>, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
CV_Assert(DeviceInfo().supports(GLOBAL_ATOMICS));
|
|
|
|
const int nQuery = queryDescs.rows;
|
|
const int nTrain = trainDescs.rows;
|
|
|
|
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
|
|
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
|
|
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
|
|
|
|
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
|
|
if (trainIdx.empty())
|
|
{
|
|
ensureSizeIsEnough(nQuery, nTrain, CV_32SC1, trainIdx);
|
|
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, distance);
|
|
}
|
|
|
|
if (stream)
|
|
stream.enqueueMemSet(nMatches, Scalar::all(0));
|
|
else
|
|
nMatches.setTo(Scalar::all(0));
|
|
|
|
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()];
|
|
CV_Assert(func != 0);
|
|
|
|
func(queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches.ptr<unsigned int>(), distance, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches,
|
|
const GpuMat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult)
|
|
{
|
|
if (trainIdx.empty() || nMatches.empty() || distance.empty())
|
|
return;
|
|
|
|
CV_Assert(trainIdx.type() == CV_32SC1);
|
|
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
|
|
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
|
|
|
|
const int nQuery = trainIdx.rows;
|
|
|
|
Mat trainIdxCPU = trainIdx;
|
|
Mat nMatchesCPU = nMatches;
|
|
Mat distanceCPU = distance;
|
|
|
|
matches.clear();
|
|
matches.reserve(nQuery);
|
|
|
|
const unsigned int* nMatches_ptr = nMatchesCPU.ptr<unsigned int>();
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
|
{
|
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
|
const float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
|
|
|
const int nMatches = std::min(static_cast<int>(nMatches_ptr[queryIdx]), trainIdx.cols);
|
|
|
|
if (nMatches == 0)
|
|
{
|
|
if (!compactResult)
|
|
matches.push_back(vector<DMatch>());
|
|
continue;
|
|
}
|
|
|
|
matches.push_back(vector<DMatch>());
|
|
vector<DMatch>& curMatches = matches.back();
|
|
curMatches.reserve(nMatches);
|
|
|
|
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr)
|
|
{
|
|
int trainIdx = *trainIdx_ptr;
|
|
|
|
float distance = *distance_ptr;
|
|
|
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
|
|
|
curMatches.push_back(m);
|
|
}
|
|
sort(curMatches.begin(), curMatches.end());
|
|
}
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
|
vector< vector<DMatch> >& matches, float maxDistance, const GpuMat& mask, bool compactResult)
|
|
{
|
|
GpuMat trainIdx, nMatches, distance;
|
|
radiusMatch(queryDescs, trainDescs, trainIdx, nMatches, distance, maxDistance, mask);
|
|
radiusMatchDownload(trainIdx, nMatches, distance, matches, compactResult);
|
|
}
|
|
|
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector<DMatch> >& matches,
|
|
float maxDistance, const vector<GpuMat>& masks, bool compactResult)
|
|
{
|
|
if (queryDescs.empty() || empty())
|
|
return;
|
|
|
|
matches.resize(queryDescs.rows);
|
|
|
|
vector< vector<DMatch> > curMatches;
|
|
|
|
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
|
|
{
|
|
radiusMatch(queryDescs, trainDescCollection[imgIdx], curMatches, maxDistance,
|
|
masks.empty() ? GpuMat() : masks[imgIdx]);
|
|
|
|
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
|
|
{
|
|
vector<DMatch>& localMatch = curMatches[queryIdx];
|
|
vector<DMatch>& globalMatch = matches[queryIdx];
|
|
|
|
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
|
|
|
|
const size_t oldSize = globalMatch.size();
|
|
|
|
copy(localMatch.begin(), localMatch.end(), back_inserter(globalMatch));
|
|
inplace_merge(globalMatch.begin(), globalMatch.begin() + oldSize, globalMatch.end());
|
|
}
|
|
}
|
|
|
|
if (compactResult)
|
|
{
|
|
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
|
mem_fun_ref(&vector<DMatch>::empty));
|
|
matches.erase(new_end, matches.end());
|
|
}
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|