554 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			554 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace testing;
 | |
| using namespace perf;
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // Remap
 | |
| 
 | |
| enum { HALF_SIZE=0, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH };
 | |
| CV_ENUM(RemapMode, HALF_SIZE, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH)
 | |
| 
 | |
| void generateMap(cv::Mat& map_x, cv::Mat& map_y, int remapMode)
 | |
| {
 | |
|     for (int j = 0; j < map_x.rows; ++j)
 | |
|     {
 | |
|         for (int i = 0; i < map_x.cols; ++i)
 | |
|         {
 | |
|             switch (remapMode)
 | |
|             {
 | |
|             case HALF_SIZE:
 | |
|                 if (i > map_x.cols*0.25 && i < map_x.cols*0.75 && j > map_x.rows*0.25 && j < map_x.rows*0.75)
 | |
|                 {
 | |
|                     map_x.at<float>(j,i) = 2.f * (i - map_x.cols * 0.25f) + 0.5f;
 | |
|                     map_y.at<float>(j,i) = 2.f * (j - map_x.rows * 0.25f) + 0.5f;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     map_x.at<float>(j,i) = 0.f;
 | |
|                     map_y.at<float>(j,i) = 0.f;
 | |
|                 }
 | |
|                 break;
 | |
|             case UPSIDE_DOWN:
 | |
|                 map_x.at<float>(j,i) = static_cast<float>(i);
 | |
|                 map_y.at<float>(j,i) = static_cast<float>(map_x.rows - j);
 | |
|                 break;
 | |
|             case REFLECTION_X:
 | |
|                 map_x.at<float>(j,i) = static_cast<float>(map_x.cols - i);
 | |
|                 map_y.at<float>(j,i) = static_cast<float>(j);
 | |
|                 break;
 | |
|             case REFLECTION_BOTH:
 | |
|                 map_x.at<float>(j,i) = static_cast<float>(map_x.cols - i);
 | |
|                 map_y.at<float>(j,i) = static_cast<float>(map_x.rows - j);
 | |
|                 break;
 | |
|             } // end of switch
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border_Mode, cv::Size, MatDepth, MatCn, Interpolation, BorderMode, RemapMode);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, Remap,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|                     ALL_BORDER_MODES,
 | |
|                     RemapMode::all()))
 | |
| {
 | |
|     declare.time(20.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = GET_PARAM(3);
 | |
|     const int borderMode = GET_PARAM(4);
 | |
|     const int remapMode = GET_PARAM(5);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat xmap(size, CV_32FC1);
 | |
|     cv::Mat ymap(size, CV_32FC1);
 | |
|     generateMap(xmap, ymap, remapMode);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         const cv::cuda::GpuMat d_xmap(xmap);
 | |
|         const cv::cuda::GpuMat d_ymap(ymap);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::remap(d_src, dst, d_xmap, d_ymap, interpolation, borderMode);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // Resize
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Scale, cv::Size, MatDepth, MatCn, Interpolation, double);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, Resize,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|                     Values(0.5, 0.3, 2.0)))
 | |
| {
 | |
|     declare.time(20.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = GET_PARAM(3);
 | |
|     const double f = GET_PARAM(4);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::resize(d_src, dst, cv::Size(), f, f, interpolation);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // ResizeArea
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_Scale, cv::Size, MatDepth, MatCn, double);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Scale, ResizeArea,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(0.2, 0.1, 0.05)))
 | |
| {
 | |
|     declare.time(1.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = cv::INTER_AREA;
 | |
|     const double f = GET_PARAM(3);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::resize(d_src, dst, cv::Size(), f, f, interpolation);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // WarpAffine
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border, cv::Size, MatDepth, MatCn, Interpolation, BorderMode);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Inter_Border, WarpAffine,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|                     ALL_BORDER_MODES))
 | |
| {
 | |
|     declare.time(20.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = GET_PARAM(3);
 | |
|     const int borderMode = GET_PARAM(4);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     const double aplha = CV_PI / 4;
 | |
|     const double mat[2 * 3] =
 | |
|     {
 | |
|         std::cos(aplha), -std::sin(aplha), src.cols / 2,
 | |
|         std::sin(aplha),  std::cos(aplha), 0
 | |
|     };
 | |
|     const cv::Mat M(2, 3, CV_64F, (void*) mat);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::warpAffine(d_src, dst, M, size, interpolation, borderMode);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::warpAffine(src, dst, M, size, interpolation, borderMode);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // WarpPerspective
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Inter_Border, WarpPerspective,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|                     ALL_BORDER_MODES))
 | |
| {
 | |
|     declare.time(20.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = GET_PARAM(3);
 | |
|     const int borderMode = GET_PARAM(4);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     const double aplha = CV_PI / 4;
 | |
|     double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2},
 | |
|                          {std::sin(aplha),  std::cos(aplha), 0},
 | |
|                          {0.0,              0.0,             1.0}};
 | |
|     const cv::Mat M(3, 3, CV_64F, (void*) mat);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::warpPerspective(d_src, dst, M, size, interpolation, borderMode);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::warpPerspective(src, dst, M, size, interpolation, borderMode);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BuildWarpPlaneMaps
 | |
| 
 | |
| PERF_TEST_P(Sz, BuildWarpPlaneMaps,
 | |
|             CUDA_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const cv::Size size = GetParam();
 | |
| 
 | |
|     const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
 | |
|     const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
 | |
|     const cv::Mat T = cv::Mat::zeros(1, 3, CV_32F);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         cv::cuda::GpuMat map_x;
 | |
|         cv::cuda::GpuMat map_y;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, map_x, map_y);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(map_x);
 | |
|         CUDA_SANITY_CHECK(map_y);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BuildWarpCylindricalMaps
 | |
| 
 | |
| PERF_TEST_P(Sz, BuildWarpCylindricalMaps,
 | |
|             CUDA_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const cv::Size size = GetParam();
 | |
| 
 | |
|     const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
 | |
|     const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         cv::cuda::GpuMat map_x;
 | |
|         cv::cuda::GpuMat map_y;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(map_x);
 | |
|         CUDA_SANITY_CHECK(map_y);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BuildWarpSphericalMaps
 | |
| 
 | |
| PERF_TEST_P(Sz, BuildWarpSphericalMaps,
 | |
|             CUDA_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const cv::Size size = GetParam();
 | |
| 
 | |
|     const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
 | |
|     const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         cv::cuda::GpuMat map_x;
 | |
|         cv::cuda::GpuMat map_y;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(map_x);
 | |
|         CUDA_SANITY_CHECK(map_y);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // Rotate
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Depth_Cn_Inter, cv::Size, MatDepth, MatCn, Interpolation);
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn_Inter, Rotate,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4,
 | |
|                     Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
|     const int interpolation = GET_PARAM(3);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::rotate(d_src, dst, size, 30.0, 0, 0, interpolation);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // PyrDown
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn, PyrDown,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::pyrDown(d_src, dst);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::pyrDown(src, dst);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // PyrUp
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn, PyrUp,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::pyrUp(d_src, dst);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::pyrUp(src, dst);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // ImagePyramidGetLayer
 | |
| 
 | |
| PERF_TEST_P(Sz_Depth_Cn, ImagePyramidGetLayer,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(CV_8U, CV_16U, CV_32F),
 | |
|                     CUDA_CHANNELS_1_3_4))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int depth = GET_PARAM(1);
 | |
|     const int channels = GET_PARAM(2);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     cv::Mat src(size, type);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     const int nLayers = 3;
 | |
|     const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         cv::Ptr<cv::cuda::ImagePyramid> d_pyr = cv::cuda::createImagePyramid(d_src, nLayers);
 | |
| 
 | |
|         TEST_CYCLE() d_pyr->getLayer(dst, dstSize);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | 
