245 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Peng Xiao, pengxiao@outlook.com
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors as is and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| #include <map>
 | |
| #include <functional>
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cvtest;
 | |
| using namespace testing;
 | |
| using namespace cv;
 | |
| 
 | |
| 
 | |
| namespace
 | |
| {
 | |
| IMPLEMENT_PARAM_CLASS(IsGreaterThan, bool)
 | |
| IMPLEMENT_PARAM_CLASS(InputSize, int)
 | |
| IMPLEMENT_PARAM_CLASS(SortMethod, int)
 | |
| 
 | |
| 
 | |
| template<class T>
 | |
| struct KV_CVTYPE{ static int toType() {return 0;} };
 | |
| 
 | |
| template<> struct KV_CVTYPE<int>  { static int toType() {return CV_32SC1;} };
 | |
| template<> struct KV_CVTYPE<float>{ static int toType() {return CV_32FC1;} };
 | |
| template<> struct KV_CVTYPE<Vec2i>{ static int toType() {return CV_32SC2;} };
 | |
| template<> struct KV_CVTYPE<Vec2f>{ static int toType() {return CV_32FC2;} };
 | |
| 
 | |
| template<class key_type, class val_type>
 | |
| bool kvgreater(pair<key_type, val_type> p1, pair<key_type, val_type> p2)
 | |
| {
 | |
|     return p1.first > p2.first;
 | |
| }
 | |
| 
 | |
| template<class key_type, class val_type>
 | |
| bool kvless(pair<key_type, val_type> p1, pair<key_type, val_type> p2)
 | |
| {
 | |
|     return p1.first < p2.first;
 | |
| }
 | |
| 
 | |
| template<class key_type, class val_type>
 | |
| void toKVPair(
 | |
|     MatConstIterator_<key_type> kit,
 | |
|     MatConstIterator_<val_type> vit,
 | |
|     int vecSize,
 | |
|     vector<pair<key_type, val_type> >& kvres
 | |
|     )
 | |
| {
 | |
|     kvres.clear();
 | |
|     for(int i = 0; i < vecSize; i ++)
 | |
|     {
 | |
|         kvres.push_back(make_pair(*kit, *vit));
 | |
|         ++kit;
 | |
|         ++vit;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<class key_type, class val_type>
 | |
| void kvquicksort(Mat& keys, Mat& vals, bool isGreater = false)
 | |
| {
 | |
|     vector<pair<key_type, val_type> > kvres;
 | |
|     toKVPair(keys.begin<key_type>(), vals.begin<val_type>(), keys.cols, kvres);
 | |
| 
 | |
|     if(isGreater)
 | |
|     {
 | |
|         std::sort(kvres.begin(), kvres.end(), kvgreater<key_type, val_type>);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         std::sort(kvres.begin(), kvres.end(), kvless<key_type, val_type>);
 | |
|     }
 | |
|     key_type * kptr = keys.ptr<key_type>();
 | |
|     val_type * vptr = vals.ptr<val_type>();
 | |
|     for(int i = 0; i < keys.cols; i ++)
 | |
|     {
 | |
|         kptr[i] = kvres[i].first;
 | |
|         vptr[i] = kvres[i].second;
 | |
|     }
 | |
| }
 | |
| 
 | |
| class SortByKey_STL
 | |
| {
 | |
| public:
 | |
|     static void sort(cv::Mat&, cv::Mat&, bool is_gt);
 | |
| private:
 | |
|     typedef void (*quick_sorter)(cv::Mat&, cv::Mat&, bool);
 | |
|     SortByKey_STL();
 | |
|     quick_sorter quick_sorters[CV_64FC4][CV_64FC4];
 | |
|     static SortByKey_STL instance;
 | |
| };
 | |
| 
 | |
| SortByKey_STL SortByKey_STL::instance = SortByKey_STL();
 | |
| 
 | |
| SortByKey_STL::SortByKey_STL()
 | |
| {
 | |
|     memset(instance.quick_sorters, 0, sizeof(quick_sorters));
 | |
| #define NEW_SORTER(KT, VT) \
 | |
|     instance.quick_sorters[KV_CVTYPE<KT>::toType()][KV_CVTYPE<VT>::toType()] = kvquicksort<KT, VT>;
 | |
| 
 | |
|     NEW_SORTER(int, int);
 | |
|     NEW_SORTER(int, Vec2i);
 | |
|     NEW_SORTER(int, float);
 | |
|     NEW_SORTER(int, Vec2f);
 | |
| 
 | |
|     NEW_SORTER(float, int);
 | |
|     NEW_SORTER(float, Vec2i);
 | |
|     NEW_SORTER(float, float);
 | |
|     NEW_SORTER(float, Vec2f);
 | |
| #undef NEW_SORTER
 | |
| }
 | |
| 
 | |
| void SortByKey_STL::sort(cv::Mat& keys, cv::Mat& vals, bool is_gt)
 | |
| {
 | |
|     instance.quick_sorters[keys.type()][vals.type()](keys, vals, is_gt);
 | |
| }
 | |
| 
 | |
| bool checkUnstableSorterResult(const Mat& gkeys_, const Mat& gvals_,
 | |
|                                const Mat& /*dkeys_*/, const Mat& dvals_)
 | |
| {
 | |
|     int cn_val = gvals_.channels();
 | |
|     int count  = gkeys_.cols;
 | |
| 
 | |
|     //for convenience we convert depth to float and channels to 1
 | |
|     Mat gkeys, gvals, dkeys, dvals;
 | |
|     gkeys_.reshape(1).convertTo(gkeys, CV_32F);
 | |
|     gvals_.reshape(1).convertTo(gvals, CV_32F);
 | |
|     //dkeys_.reshape(1).convertTo(dkeys, CV_32F);
 | |
|     dvals_.reshape(1).convertTo(dvals, CV_32F);
 | |
|     float * gkptr = gkeys.ptr<float>();
 | |
|     float * gvptr = gvals.ptr<float>();
 | |
|     //float * dkptr = dkeys.ptr<float>();
 | |
|     float * dvptr = dvals.ptr<float>();
 | |
| 
 | |
|     for(int i = 0; i < count - 1; ++i)
 | |
|     {
 | |
|         int iden_count = 0;
 | |
|         // firstly calculate the number of identical keys
 | |
|         while(gkptr[i + iden_count] == gkptr[i + 1 + iden_count])
 | |
|         {
 | |
|             ++ iden_count;
 | |
|         }
 | |
| 
 | |
|         // sort dv and gv
 | |
|         int num_of_val = (iden_count + 1) * cn_val;
 | |
|         std::sort(gvptr + i * cn_val, gvptr + i * cn_val + num_of_val);
 | |
|         std::sort(dvptr + i * cn_val, dvptr + i * cn_val + num_of_val);
 | |
| 
 | |
|         // then check if [i, i + iden_count) is the same
 | |
|         for(int j = 0; j < num_of_val; ++j)
 | |
|         {
 | |
|             if(gvptr[i + j] != dvptr[i + j])
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         i += iden_count;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| }
 | |
| 
 | |
| #define INPUT_SIZES  Values(InputSize(0x10), InputSize(0x100), InputSize(0x10000)) //2^4, 2^8, 2^16
 | |
| #define KEY_TYPES    Values(MatType(CV_32SC1), MatType(CV_32FC1))
 | |
| #define VAL_TYPES    Values(MatType(CV_32SC1), MatType(CV_32SC2), MatType(CV_32FC1), MatType(CV_32FC2))
 | |
| #define SORT_METHODS Values(SortMethod(cv::ocl::SORT_BITONIC),SortMethod(cv::ocl::SORT_MERGE),SortMethod(cv::ocl::SORT_RADIX)/*,SortMethod(cv::ocl::SORT_SELECTION)*/)
 | |
| #define F_OR_T       Values(IsGreaterThan(false), IsGreaterThan(true))
 | |
| 
 | |
| PARAM_TEST_CASE(SortByKey, InputSize, MatType, MatType, SortMethod, IsGreaterThan)
 | |
| {
 | |
|     InputSize input_size;
 | |
|     MatType key_type, val_type;
 | |
|     SortMethod method;
 | |
|     IsGreaterThan is_gt;
 | |
| 
 | |
|     Mat mat_key, mat_val;
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         input_size = GET_PARAM(0);
 | |
|         key_type   = GET_PARAM(1);
 | |
|         val_type   = GET_PARAM(2);
 | |
|         method     = GET_PARAM(3);
 | |
|         is_gt      = GET_PARAM(4);
 | |
| 
 | |
|         using namespace cv;
 | |
|         // fill key and val
 | |
|         mat_key = randomMat(Size(input_size, 1), key_type, INT_MIN, INT_MAX);
 | |
|         mat_val = randomMat(Size(input_size, 1), val_type, INT_MIN, INT_MAX);
 | |
|     }
 | |
| };
 | |
| 
 | |
| OCL_TEST_P(SortByKey, Accuracy)
 | |
| {
 | |
|     using namespace cv;
 | |
|     ocl::oclMat oclmat_key(mat_key);
 | |
|     ocl::oclMat oclmat_val(mat_val);
 | |
| 
 | |
|     ocl::sortByKey(oclmat_key, oclmat_val, method, is_gt);
 | |
|     SortByKey_STL::sort(mat_key, mat_val, is_gt);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(mat_key, oclmat_key, 0.0);
 | |
|     EXPECT_TRUE(checkUnstableSorterResult(mat_key, mat_val, oclmat_key, oclmat_val));
 | |
| }
 | |
| INSTANTIATE_TEST_CASE_P(OCL_SORT, SortByKey, Combine(INPUT_SIZES, KEY_TYPES, VAL_TYPES, SORT_METHODS, F_OR_T));
 | 
