738 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Fangfang Bai, fangfang@multicorewareinc.com
 | |
| //    Jin Ma,       jin@multicorewareinc.com
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors as is and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace perf;
 | |
| using std::tr1::tuple;
 | |
| using std::tr1::get;
 | |
| 
 | |
| ///////////// equalizeHist ////////////////////////
 | |
| 
 | |
| typedef TestBaseWithParam<Size> equalizeHistFixture;
 | |
| 
 | |
| PERF_TEST_P(equalizeHistFixture, equalizeHist, OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
|     const double eps = 1 + DBL_EPSILON;
 | |
| 
 | |
|     Mat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
 | |
|     declare.in(src, WARMUP_RNG).out(dst);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, src.type());
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::equalizeHist(oclSrc, oclDst);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst, eps);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::equalizeHist(src, dst);
 | |
| 
 | |
|         SANITY_CHECK(dst, eps);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| /////////// CopyMakeBorder //////////////////////
 | |
| 
 | |
| CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,
 | |
|         BORDER_WRAP, BORDER_REFLECT_101)
 | |
| 
 | |
| typedef tuple<Size, MatType, Border> CopyMakeBorderParamType;
 | |
| typedef TestBaseWithParam<CopyMakeBorderParamType> CopyMakeBorderFixture;
 | |
| 
 | |
| PERF_TEST_P(CopyMakeBorderFixture, CopyMakeBorder,
 | |
|             ::testing::Combine(OCL_TYPICAL_MAT_SIZES,
 | |
|                                OCL_PERF_ENUM(CV_8UC1, CV_8UC4),
 | |
|                                Border::all()))
 | |
| {
 | |
|     const CopyMakeBorderParamType params = GetParam();
 | |
|     const Size srcSize = get<0>(params);
 | |
|     const int type = get<1>(params), borderType = get<2>(params);
 | |
| 
 | |
|     Mat src(srcSize, type), dst;
 | |
|     const Size dstSize = srcSize + Size(12, 12);
 | |
|     dst.create(dstSize, type);
 | |
|     declare.in(src, WARMUP_RNG).out(dst);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(dstSize, type);
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::copyMakeBorder(oclSrc, oclDst, 7, 5, 5, 7, borderType, cv::Scalar(1.0));
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::copyMakeBorder(src, dst, 7, 5, 5, 7, borderType, cv::Scalar(1.0));
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// cornerMinEigenVal ////////////////////////
 | |
| 
 | |
| typedef Size_MatType cornerMinEigenValFixture;
 | |
| 
 | |
| PERF_TEST_P(cornerMinEigenValFixture, cornerMinEigenVal,
 | |
|             ::testing::Combine(OCL_TYPICAL_MAT_SIZES,
 | |
|                                OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
 | |
| {
 | |
|     const Size_MatType_t params = GetParam();
 | |
|     const Size srcSize = get<0>(params);
 | |
|     const int type = get<1>(params), borderType = BORDER_REFLECT;
 | |
|     const int blockSize = 7, apertureSize = 1 + 2 * 3;
 | |
| 
 | |
|     Mat src(srcSize, type), dst(srcSize, CV_32FC1);
 | |
|     declare.in(src, WARMUP_RNG).out(dst)
 | |
|             .time(srcSize == OCL_SIZE_4000 ? 20 : srcSize == OCL_SIZE_2000 ? 5 : 3);
 | |
| 
 | |
|     const int depth = CV_MAT_DEPTH(type);
 | |
|     const ERROR_TYPE errorType = depth == CV_8U ? ERROR_ABSOLUTE : ERROR_RELATIVE;
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::cornerMinEigenVal(oclSrc, oclDst, blockSize, apertureSize, borderType);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst, 1e-6, errorType);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::cornerMinEigenVal(src, dst, blockSize, apertureSize, borderType);
 | |
| 
 | |
|         SANITY_CHECK(dst, 1e-6, errorType);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// cornerHarris ////////////////////////
 | |
| 
 | |
| typedef Size_MatType cornerHarrisFixture;
 | |
| 
 | |
| PERF_TEST_P(cornerHarrisFixture, cornerHarris,
 | |
|             ::testing::Combine(OCL_TYPICAL_MAT_SIZES,
 | |
|                                OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
 | |
| {
 | |
|     const Size_MatType_t params = GetParam();
 | |
|     const Size srcSize = get<0>(params);
 | |
|     const int type = get<1>(params), borderType = BORDER_REFLECT;
 | |
| 
 | |
|     Mat src(srcSize, type), dst(srcSize, CV_32FC1);
 | |
|     randu(src, 0, 1);
 | |
|     declare.in(src).out(dst)
 | |
|             .time(srcSize == OCL_SIZE_4000 ? 20 : srcSize == OCL_SIZE_2000 ? 5 : 3);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::cornerHarris(oclSrc, oclDst, 5, 7, 0.1, borderType);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst, 3e-5);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::cornerHarris(src, dst, 5, 7, 0.1, borderType);
 | |
| 
 | |
|         SANITY_CHECK(dst, 3e-5);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// integral ////////////////////////
 | |
| 
 | |
| typedef TestBaseWithParam<Size> integralFixture;
 | |
| 
 | |
| PERF_TEST_P(integralFixture, integral, OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
| 
 | |
|     Mat src(srcSize, CV_8UC1), dst;
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst;
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::integral(oclSrc, oclDst);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::integral(src, dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// threshold////////////////////////
 | |
| 
 | |
| CV_ENUM(ThreshType, THRESH_BINARY, THRESH_TOZERO_INV)
 | |
| 
 | |
| typedef tuple<Size, MatType, ThreshType> ThreshParams;
 | |
| typedef TestBaseWithParam<ThreshParams> ThreshFixture;
 | |
| 
 | |
| PERF_TEST_P(ThreshFixture, threshold,
 | |
|             ::testing::Combine(OCL_TYPICAL_MAT_SIZES,
 | |
|                                OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC4, CV_32FC1),
 | |
|                                ThreshType::all()))
 | |
| {
 | |
|     const ThreshParams params = GetParam();
 | |
|     const Size srcSize = get<0>(params);
 | |
|     const int srcType = get<1>(params);
 | |
|     const int threshType = get<2>(params);
 | |
|     const double maxValue = 220.0, threshold = 50;
 | |
| 
 | |
|     Mat src(srcSize, srcType), dst(srcSize, srcType);
 | |
|     randu(src, 0, 100);
 | |
|     declare.in(src).out(dst);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, CV_8U);
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::threshold(oclSrc, oclDst, threshold, maxValue, threshType);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() cv::threshold(src, dst, threshold, maxValue, threshType);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// meanShiftFiltering////////////////////////
 | |
| 
 | |
| typedef struct _COOR
 | |
| {
 | |
|     short x;
 | |
|     short y;
 | |
| } COOR;
 | |
| 
 | |
| static COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab)
 | |
| {
 | |
| 
 | |
|     int isr2 = sr * sr;
 | |
|     int c0, c1, c2, c3;
 | |
|     int iter;
 | |
|     uchar *ptr = NULL;
 | |
|     uchar *pstart = NULL;
 | |
|     int revx = 0, revy = 0;
 | |
|     c0 = sptr[0];
 | |
|     c1 = sptr[1];
 | |
|     c2 = sptr[2];
 | |
|     c3 = sptr[3];
 | |
|     // iterate meanshift procedure
 | |
|     for(iter = 0; iter < maxIter; iter++ )
 | |
|     {
 | |
|         int count = 0;
 | |
|         int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
 | |
| 
 | |
|         //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
 | |
|         int minx = x0 - sp;
 | |
|         int miny = y0 - sp;
 | |
|         int maxx = x0 + sp;
 | |
|         int maxy = y0 + sp;
 | |
| 
 | |
|         //deal with the image boundary
 | |
|         if(minx < 0) minx = 0;
 | |
|         if(miny < 0) miny = 0;
 | |
|         if(maxx >= size.width) maxx = size.width - 1;
 | |
|         if(maxy >= size.height) maxy = size.height - 1;
 | |
|         if(iter == 0)
 | |
|         {
 | |
|             pstart = sptr;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             pstart = pstart + revy * sstep + (revx << 2); //point to the new position
 | |
|         }
 | |
|         ptr = pstart;
 | |
|         ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
 | |
| 
 | |
|         for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
 | |
|         {
 | |
|             int rowCount = 0;
 | |
|             int x = minx;
 | |
| #if CV_ENABLE_UNROLLED
 | |
|             for( ; x + 4 <= maxx; x += 4, ptr += 16)
 | |
|             {
 | |
|                 int t0, t1, t2;
 | |
|                 t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 1;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 2;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 3;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|             for(; x <= maxx; x++, ptr += 4)
 | |
|             {
 | |
|                 int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|             }
 | |
|             if(rowCount == 0)
 | |
|                 continue;
 | |
|             count += rowCount;
 | |
|             sy += y * rowCount;
 | |
|         }
 | |
| 
 | |
|         if( count == 0 )
 | |
|             break;
 | |
| 
 | |
|         int x1 = sx / count;
 | |
|         int y1 = sy / count;
 | |
|         s0 = s0 / count;
 | |
|         s1 = s1 / count;
 | |
|         s2 = s2 / count;
 | |
| 
 | |
|         bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
 | |
|             tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps);
 | |
| 
 | |
|         //revise the pointer corresponding to the new (y0,x0)
 | |
|         revx = x1 - x0;
 | |
|         revy = y1 - y0;
 | |
| 
 | |
|         x0 = x1;
 | |
|         y0 = y1;
 | |
|         c0 = s0;
 | |
|         c1 = s1;
 | |
|         c2 = s2;
 | |
| 
 | |
|         if( stopFlag )
 | |
|             break;
 | |
|     } //for iter
 | |
| 
 | |
|     dptr[0] = (uchar)c0;
 | |
|     dptr[1] = (uchar)c1;
 | |
|     dptr[2] = (uchar)c2;
 | |
|     dptr[3] = (uchar)c3;
 | |
| 
 | |
|     COOR coor;
 | |
|     coor.x = static_cast<short>(x0);
 | |
|     coor.y = static_cast<short>(y0);
 | |
|     return coor;
 | |
| }
 | |
| 
 | |
| static void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit)
 | |
| {
 | |
|     if( src_roi.empty() )
 | |
|         CV_Error( CV_StsBadArg, "The input image is empty" );
 | |
| 
 | |
|     if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
 | |
|         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
 | |
| 
 | |
|     dst_roi.create(src_roi.size(), src_roi.type());
 | |
| 
 | |
|     CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
 | |
|     CV_Assert( !(dst_roi.step & 0x3) );
 | |
| 
 | |
|     if( !(crit.type & cv::TermCriteria::MAX_ITER) )
 | |
|         crit.maxCount = 5;
 | |
|     int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | |
|     float eps;
 | |
|     if( !(crit.type & cv::TermCriteria::EPS) )
 | |
|         eps = 1.f;
 | |
|     eps = (float)std::max(crit.epsilon, 0.0);
 | |
| 
 | |
|     int tab[512];
 | |
|     for(int i = 0; i < 512; i++)
 | |
|         tab[i] = (i - 255) * (i - 255);
 | |
|     uchar *sptr = src_roi.data;
 | |
|     uchar *dptr = dst_roi.data;
 | |
|     int sstep = (int)src_roi.step;
 | |
|     int dstep = (int)dst_roi.step;
 | |
|     cv::Size size = src_roi.size();
 | |
| 
 | |
|     for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | |
|         dptr += dstep - (size.width << 2))
 | |
|     {
 | |
|         for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4)
 | |
|         {
 | |
|             do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef TestBaseWithParam<Size> meanShiftFilteringFixture;
 | |
| 
 | |
| PERF_TEST_P(meanShiftFilteringFixture, meanShiftFiltering,
 | |
|             OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
|     const int sp = 5, sr = 6;
 | |
|     cv::TermCriteria crit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1);
 | |
| 
 | |
|     Mat src(srcSize, CV_8UC4), dst(srcSize, CV_8UC4);
 | |
|     declare.in(src, WARMUP_RNG).out(dst)
 | |
|             .time(srcSize == OCL_SIZE_4000 ?
 | |
|                       56 : srcSize == OCL_SIZE_2000 ? 15 : 3.8);
 | |
| 
 | |
|     if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() meanShiftFiltering_(src, dst, sp, sr, crit);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, CV_8UC4);
 | |
| 
 | |
|         OCL_TEST_CYCLE() ocl::meanShiftFiltering(oclSrc, oclDst, sp, sr, crit);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| static void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit)
 | |
| {
 | |
|     if (src_roi.empty())
 | |
|     {
 | |
|         CV_Error(CV_StsBadArg, "The input image is empty");
 | |
|     }
 | |
|     if (src_roi.depth() != CV_8U || src_roi.channels() != 4)
 | |
|     {
 | |
|         CV_Error(CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported");
 | |
|     }
 | |
| 
 | |
|     dst_roi.create(src_roi.size(), src_roi.type());
 | |
|     dstCoor_roi.create(src_roi.size(), CV_16SC2);
 | |
| 
 | |
|     CV_Assert((src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
 | |
|               (src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
 | |
|     CV_Assert(!(dstCoor_roi.step & 0x3));
 | |
| 
 | |
|     if (!(crit.type & cv::TermCriteria::MAX_ITER))
 | |
|     {
 | |
|         crit.maxCount = 5;
 | |
|     }
 | |
| 
 | |
|     int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | |
|     float eps;
 | |
| 
 | |
|     if (!(crit.type & cv::TermCriteria::EPS))
 | |
|     {
 | |
|         eps = 1.f;
 | |
|     }
 | |
| 
 | |
|     eps = (float)std::max(crit.epsilon, 0.0);
 | |
| 
 | |
|     int tab[512];
 | |
| 
 | |
|     for (int i = 0; i < 512; i++)
 | |
|     {
 | |
|         tab[i] = (i - 255) * (i - 255);
 | |
|     }
 | |
| 
 | |
|     uchar *sptr = src_roi.data;
 | |
|     uchar *dptr = dst_roi.data;
 | |
|     short *dCoorptr = (short *)dstCoor_roi.data;
 | |
|     int sstep = (int)src_roi.step;
 | |
|     int dstep = (int)dst_roi.step;
 | |
|     int dCoorstep = (int)dstCoor_roi.step >> 1;
 | |
|     cv::Size size = src_roi.size();
 | |
| 
 | |
|     for (int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | |
|             dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1))
 | |
|     {
 | |
|         for (int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2)
 | |
|         {
 | |
|             *((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| typedef TestBaseWithParam<Size> meanShiftProcFixture;
 | |
| 
 | |
| PERF_TEST_P(meanShiftProcFixture, meanShiftProc,
 | |
|             OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
|     TermCriteria crit(TermCriteria::COUNT + TermCriteria::EPS, 5, 1);
 | |
| 
 | |
|     Mat src(srcSize, CV_8UC4), dst1(srcSize, CV_8UC4),
 | |
|             dst2(srcSize, CV_16SC2);
 | |
|     declare.in(src, WARMUP_RNG).out(dst1, dst2)
 | |
|             .time(srcSize == OCL_SIZE_4000 ?
 | |
|                       56 : srcSize == OCL_SIZE_2000 ? 15 : 3.8);;
 | |
| 
 | |
|     if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() meanShiftProc_(src, dst1, dst2, 5, 6, crit);
 | |
| 
 | |
|         SANITY_CHECK(dst1);
 | |
|         SANITY_CHECK(dst2);
 | |
|     }
 | |
|     else if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst1(srcSize, CV_8UC4),
 | |
|                 oclDst2(srcSize, CV_16SC2);
 | |
| 
 | |
|         OCL_TEST_CYCLE() ocl::meanShiftProc(oclSrc, oclDst1, oclDst2, 5, 6, crit);
 | |
| 
 | |
|         oclDst1.download(dst1);
 | |
|         oclDst2.download(dst2);
 | |
| 
 | |
|         SANITY_CHECK(dst1);
 | |
|         SANITY_CHECK(dst2);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// CLAHE ////////////////////////
 | |
| 
 | |
| typedef TestBaseWithParam<Size> CLAHEFixture;
 | |
| 
 | |
| PERF_TEST_P(CLAHEFixture, CLAHE, OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
|     const string impl = getSelectedImpl();
 | |
| 
 | |
|     Mat src(srcSize, CV_8UC1), dst;
 | |
|     const double clipLimit = 40.0;
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (srcSize == OCL_SIZE_4000)
 | |
|         declare.time(11);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst;
 | |
|         cv::Ptr<cv::CLAHE> oclClahe = cv::ocl::createCLAHE(clipLimit);
 | |
| 
 | |
|         OCL_TEST_CYCLE() oclClahe->apply(oclSrc, oclDst);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
 | |
|         TEST_CYCLE() clahe->apply(src, dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| ///////////// columnSum////////////////////////
 | |
| 
 | |
| typedef TestBaseWithParam<Size> columnSumFixture;
 | |
| 
 | |
| static void columnSumPerfTest(const Mat & src, Mat & dst)
 | |
| {
 | |
|     for (int j = 0; j < src.cols; j++)
 | |
|         dst.at<float>(0, j) = src.at<float>(0, j);
 | |
| 
 | |
|     for (int i = 1; i < src.rows; ++i)
 | |
|         for (int j = 0; j < src.cols; ++j)
 | |
|             dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
 | |
| }
 | |
| 
 | |
| PERF_TEST_P(columnSumFixture, columnSum, OCL_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const Size srcSize = GetParam();
 | |
| 
 | |
|     Mat src(srcSize, CV_32FC1), dst(srcSize, CV_32FC1);
 | |
|     declare.in(src, WARMUP_RNG).out(dst);
 | |
| 
 | |
|     if (srcSize == OCL_SIZE_4000)
 | |
|         declare.time(5);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
 | |
| 
 | |
|         OCL_TEST_CYCLE() cv::ocl::columnSum(oclSrc, oclDst);
 | |
| 
 | |
|         oclDst.download(dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() columnSumPerfTest(src, dst);
 | |
| 
 | |
|         SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | |
| 
 | |
| //////////////////////////////distanceToCenters////////////////////////////////////////////////
 | |
| 
 | |
| CV_ENUM(DistType, NORM_L1, NORM_L2SQR)
 | |
| 
 | |
| typedef tuple<Size, DistType> distanceToCentersParameters;
 | |
| typedef TestBaseWithParam<distanceToCentersParameters> distanceToCentersFixture;
 | |
| 
 | |
| static void distanceToCentersPerfTest(Mat& src, Mat& centers, Mat& dists, Mat& labels, int distType)
 | |
| {
 | |
|     Mat batch_dists;
 | |
|     cv::batchDistance(src, centers, batch_dists, CV_32FC1, noArray(), distType);
 | |
| 
 | |
|     std::vector<float> dists_v;
 | |
|     std::vector<int> labels_v;
 | |
| 
 | |
|     for (int i = 0; i < batch_dists.rows; i++)
 | |
|     {
 | |
|         Mat r = batch_dists.row(i);
 | |
|         double mVal;
 | |
|         Point mLoc;
 | |
| 
 | |
|         minMaxLoc(r, &mVal, NULL, &mLoc, NULL);
 | |
|         dists_v.push_back(static_cast<float>(mVal));
 | |
|         labels_v.push_back(mLoc.x);
 | |
|     }
 | |
| 
 | |
|     Mat(dists_v).copyTo(dists);
 | |
|     Mat(labels_v).copyTo(labels);
 | |
| }
 | |
| 
 | |
| PERF_TEST_P(distanceToCentersFixture, distanceToCenters, ::testing::Combine(::testing::Values(cv::Size(256,256), cv::Size(512,512)), DistType::all()) )
 | |
| {
 | |
|     Size size = get<0>(GetParam());
 | |
|     int distType = get<1>(GetParam());
 | |
| 
 | |
|     Mat src(size, CV_32FC1), centers(size, CV_32FC1);
 | |
|     Mat dists(src.rows, 1, CV_32FC1), labels(src.rows, 1, CV_32SC1);
 | |
| 
 | |
|     declare.in(src, centers, WARMUP_RNG).out(dists, labels);
 | |
| 
 | |
|     if (RUN_OCL_IMPL)
 | |
|     {
 | |
|         ocl::oclMat ocl_src(src), ocl_centers(centers);
 | |
| 
 | |
|         OCL_TEST_CYCLE() ocl::distanceToCenters(ocl_src, ocl_centers, dists, labels, distType);
 | |
| 
 | |
|         SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
 | |
|         SANITY_CHECK(labels);
 | |
|     }
 | |
|     else if (RUN_PLAIN_IMPL)
 | |
|     {
 | |
|         TEST_CYCLE() distanceToCentersPerfTest(src, centers, dists, labels, distType);
 | |
| 
 | |
|         SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
 | |
|         SANITY_CHECK(labels);
 | |
|     }
 | |
|     else
 | |
|         OCL_PERF_ELSE
 | |
| }
 | 
