66 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| Robust line fitting.
 | |
| ==================
 | |
| 
 | |
| Example of using cv2.fitLine function for fitting line
 | |
| to points in presence of outliers.
 | |
| 
 | |
| Switch through different M-estimator functions and see,
 | |
| how well the robust functions fit the line even
 | |
| in case of ~50% of outliers.
 | |
| 
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| import sys
 | |
| PY3 = sys.version_info[0] == 3
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| 
 | |
| from tests_common import NewOpenCVTests
 | |
| 
 | |
| w, h = 512, 256
 | |
| 
 | |
| def toint(p):
 | |
|     return tuple(map(int, p))
 | |
| 
 | |
| def sample_line(p1, p2, n, noise=0.0):
 | |
|     np.random.seed(10)
 | |
|     p1 = np.float32(p1)
 | |
|     t = np.random.rand(n,1)
 | |
|     return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
 | |
| 
 | |
| dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER']
 | |
| 
 | |
| class fitline_test(NewOpenCVTests):
 | |
| 
 | |
|     def test_fitline(self):
 | |
| 
 | |
|         noise = 5
 | |
|         n = 200
 | |
|         r = 5 / 100.0
 | |
|         outn = int(n*r)
 | |
| 
 | |
|         p0, p1 = (90, 80), (w-90, h-80)
 | |
|         line_points = sample_line(p0, p1, n-outn, noise)
 | |
|         outliers = np.random.rand(outn, 2) * (w, h)
 | |
|         points = np.vstack([line_points, outliers])
 | |
| 
 | |
|         lines = []
 | |
| 
 | |
|         for name in dist_func_names:
 | |
|             func = getattr(cv2, name)
 | |
|             vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
 | |
|             line = [float(vx), float(vy), float(cx), float(cy)]
 | |
|             lines.append(line)
 | |
| 
 | |
|         eps = 0.05
 | |
| 
 | |
|         refVec =  (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0)
 | |
| 
 | |
|         for i in range(len(lines)):
 | |
|             self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps) | 
