337 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| class CV_TemplMatchTest : public cvtest::ArrayTest
 | |
| {
 | |
| public:
 | |
|     CV_TemplMatchTest();
 | |
| 
 | |
| protected:
 | |
|     int read_params( CvFileStorage* fs );
 | |
|     void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
 | |
|     void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
 | |
|     double get_success_error_level( int test_case_idx, int i, int j );
 | |
|     void run_func();
 | |
|     void prepare_to_validation( int );
 | |
| 
 | |
|     int max_template_size;
 | |
|     int method;
 | |
|     bool test_cpp;
 | |
| };
 | |
| 
 | |
| 
 | |
| CV_TemplMatchTest::CV_TemplMatchTest()
 | |
| {
 | |
|     test_array[INPUT].push_back(NULL);
 | |
|     test_array[INPUT].push_back(NULL);
 | |
|     test_array[OUTPUT].push_back(NULL);
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
|     element_wise_relative_error = false;
 | |
|     max_template_size = 100;
 | |
|     method = 0;
 | |
|     test_cpp = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| int CV_TemplMatchTest::read_params( CvFileStorage* fs )
 | |
| {
 | |
|     int code = cvtest::ArrayTest::read_params( fs );
 | |
|     if( code < 0 )
 | |
|         return code;
 | |
| 
 | |
|     max_template_size = cvReadInt( find_param( fs, "max_template_size" ), max_template_size );
 | |
|     max_template_size = cvtest::clipInt( max_template_size, 1, 100 );
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_TemplMatchTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
 | |
| {
 | |
|     cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
 | |
|     int depth = CV_MAT_DEPTH(type);
 | |
|     if( depth == CV_32F )
 | |
|     {
 | |
|         low = Scalar::all(-10.);
 | |
|         high = Scalar::all(10.);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_TemplMatchTest::get_test_array_types_and_sizes( int test_case_idx,
 | |
|                                                 vector<vector<Size> >& sizes, vector<vector<int> >& types )
 | |
| {
 | |
|     RNG& rng = ts->get_rng();
 | |
|     int depth = cvtest::randInt(rng) % 2, cn = cvtest::randInt(rng) & 1 ? 3 : 1;
 | |
|     cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
 | |
|     depth = depth == 0 ? CV_8U : CV_32F;
 | |
| 
 | |
|     types[INPUT][0] = types[INPUT][1] = CV_MAKETYPE(depth,cn);
 | |
|     types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
 | |
| 
 | |
|     sizes[INPUT][1].width = cvtest::randInt(rng)%MIN(sizes[INPUT][1].width,max_template_size) + 1;
 | |
|     sizes[INPUT][1].height = cvtest::randInt(rng)%MIN(sizes[INPUT][1].height,max_template_size) + 1;
 | |
|     sizes[OUTPUT][0].width = sizes[INPUT][0].width - sizes[INPUT][1].width + 1;
 | |
|     sizes[OUTPUT][0].height = sizes[INPUT][0].height - sizes[INPUT][1].height + 1;
 | |
|     sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
 | |
| 
 | |
|     method = cvtest::randInt(rng)%6;
 | |
|     test_cpp = (cvtest::randInt(rng) & 256) == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| double CV_TemplMatchTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
 | |
| {
 | |
|     if( test_mat[INPUT][1].depth() == CV_8U ||
 | |
|         (method >= CV_TM_CCOEFF && test_mat[INPUT][1].cols*test_mat[INPUT][1].rows <= 2) )
 | |
|         return 1e-2;
 | |
|     else
 | |
|         return 1e-3;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_TemplMatchTest::run_func()
 | |
| {
 | |
|     if(!test_cpp)
 | |
|         cvMatchTemplate( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0], method );
 | |
|     else
 | |
|     {
 | |
|         cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
 | |
|         cv::matchTemplate(cv::cvarrToMat(test_array[INPUT][0]), cv::cvarrToMat(test_array[INPUT][1]), _out, method);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* result, int method )
 | |
| {
 | |
|     int i, j, k, l;
 | |
|     int depth = CV_MAT_DEPTH(img->type), cn = CV_MAT_CN(img->type);
 | |
|     int width_n = templ->cols*cn, height = templ->rows;
 | |
|     int a_step = img->step / CV_ELEM_SIZE(img->type & CV_MAT_DEPTH_MASK);
 | |
|     int b_step = templ->step / CV_ELEM_SIZE(templ->type & CV_MAT_DEPTH_MASK);
 | |
|     CvScalar b_mean, b_sdv;
 | |
|     double b_denom = 1., b_sum2 = 0;
 | |
|     int area = templ->rows*templ->cols;
 | |
| 
 | |
|     cvAvgSdv(templ, &b_mean, &b_sdv);
 | |
| 
 | |
|     for( i = 0; i < cn; i++ )
 | |
|         b_sum2 += (b_sdv.val[i]*b_sdv.val[i] + b_mean.val[i]*b_mean.val[i])*area;
 | |
| 
 | |
|     if( b_sdv.val[0]*b_sdv.val[0] + b_sdv.val[1]*b_sdv.val[1] +
 | |
|         b_sdv.val[2]*b_sdv.val[2] + b_sdv.val[3]*b_sdv.val[3] < DBL_EPSILON &&
 | |
|         method == CV_TM_CCOEFF_NORMED )
 | |
|     {
 | |
|         cvSet( result, cvScalarAll(1.) );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if( method & 1 )
 | |
|     {
 | |
|         b_denom = 0;
 | |
|         if( method != CV_TM_CCOEFF_NORMED )
 | |
|         {
 | |
|             b_denom = b_sum2;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             for( i = 0; i < cn; i++ )
 | |
|                 b_denom += b_sdv.val[i]*b_sdv.val[i]*area;
 | |
|         }
 | |
|         b_denom = sqrt(b_denom);
 | |
|         if( b_denom == 0 )
 | |
|             b_denom = 1.;
 | |
|     }
 | |
| 
 | |
|     assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
 | |
| 
 | |
|     for( i = 0; i < result->rows; i++ )
 | |
|     {
 | |
|         for( j = 0; j < result->cols; j++ )
 | |
|         {
 | |
|             CvScalar a_sum = {{ 0, 0, 0, 0 }}, a_sum2 = {{ 0, 0, 0, 0 }};
 | |
|             CvScalar ccorr = {{ 0, 0, 0, 0 }};
 | |
|             double value = 0.;
 | |
| 
 | |
|             if( depth == CV_8U )
 | |
|             {
 | |
|                 const uchar* a = img->data.ptr + i*img->step + j*cn;
 | |
|                 const uchar* b = templ->data.ptr;
 | |
| 
 | |
|                 if( cn == 1 || method < CV_TM_CCOEFF )
 | |
|                 {
 | |
|                     for( k = 0; k < height; k++, a += a_step, b += b_step )
 | |
|                         for( l = 0; l < width_n; l++ )
 | |
|                         {
 | |
|                             ccorr.val[0] += a[l]*b[l];
 | |
|                             a_sum.val[0] += a[l];
 | |
|                             a_sum2.val[0] += a[l]*a[l];
 | |
|                         }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for( k = 0; k < height; k++, a += a_step, b += b_step )
 | |
|                         for( l = 0; l < width_n; l += 3 )
 | |
|                         {
 | |
|                             ccorr.val[0] += a[l]*b[l];
 | |
|                             ccorr.val[1] += a[l+1]*b[l+1];
 | |
|                             ccorr.val[2] += a[l+2]*b[l+2];
 | |
|                             a_sum.val[0] += a[l];
 | |
|                             a_sum.val[1] += a[l+1];
 | |
|                             a_sum.val[2] += a[l+2];
 | |
|                             a_sum2.val[0] += a[l]*a[l];
 | |
|                             a_sum2.val[1] += a[l+1]*a[l+1];
 | |
|                             a_sum2.val[2] += a[l+2]*a[l+2];
 | |
|                         }
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 const float* a = (const float*)(img->data.ptr + i*img->step) + j*cn;
 | |
|                 const float* b = (const float*)templ->data.ptr;
 | |
| 
 | |
|                 if( cn == 1 || method < CV_TM_CCOEFF )
 | |
|                 {
 | |
|                     for( k = 0; k < height; k++, a += a_step, b += b_step )
 | |
|                         for( l = 0; l < width_n; l++ )
 | |
|                         {
 | |
|                             ccorr.val[0] += a[l]*b[l];
 | |
|                             a_sum.val[0] += a[l];
 | |
|                             a_sum2.val[0] += a[l]*a[l];
 | |
|                         }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for( k = 0; k < height; k++, a += a_step, b += b_step )
 | |
|                         for( l = 0; l < width_n; l += 3 )
 | |
|                         {
 | |
|                             ccorr.val[0] += a[l]*b[l];
 | |
|                             ccorr.val[1] += a[l+1]*b[l+1];
 | |
|                             ccorr.val[2] += a[l+2]*b[l+2];
 | |
|                             a_sum.val[0] += a[l];
 | |
|                             a_sum.val[1] += a[l+1];
 | |
|                             a_sum.val[2] += a[l+2];
 | |
|                             a_sum2.val[0] += a[l]*a[l];
 | |
|                             a_sum2.val[1] += a[l+1]*a[l+1];
 | |
|                             a_sum2.val[2] += a[l+2]*a[l+2];
 | |
|                         }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             switch( method )
 | |
|             {
 | |
|             case CV_TM_CCORR:
 | |
|             case CV_TM_CCORR_NORMED:
 | |
|                 value = ccorr.val[0];
 | |
|                 break;
 | |
|             case CV_TM_SQDIFF:
 | |
|             case CV_TM_SQDIFF_NORMED:
 | |
|                 value = (a_sum2.val[0] + b_sum2 - 2*ccorr.val[0]);
 | |
|                 break;
 | |
|             default:
 | |
|                 value = (ccorr.val[0] - a_sum.val[0]*b_mean.val[0]+
 | |
|                          ccorr.val[1] - a_sum.val[1]*b_mean.val[1]+
 | |
|                          ccorr.val[2] - a_sum.val[2]*b_mean.val[2]);
 | |
|             }
 | |
| 
 | |
|             if( method & 1 )
 | |
|             {
 | |
|                 double denom;
 | |
| 
 | |
|                 // calc denominator
 | |
|                 if( method != CV_TM_CCOEFF_NORMED )
 | |
|                 {
 | |
|                     denom = a_sum2.val[0] + a_sum2.val[1] + a_sum2.val[2];
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     denom = a_sum2.val[0] - (a_sum.val[0]*a_sum.val[0])/area;
 | |
|                     denom += a_sum2.val[1] - (a_sum.val[1]*a_sum.val[1])/area;
 | |
|                     denom += a_sum2.val[2] - (a_sum.val[2]*a_sum.val[2])/area;
 | |
|                 }
 | |
|                 denom = sqrt(MAX(denom,0))*b_denom;
 | |
|                 if( fabs(value) < denom )
 | |
|                     value /= denom;
 | |
|                 else if( fabs(value) < denom*1.125 )
 | |
|                     value = value > 0 ? 1 : -1;
 | |
|                 else
 | |
|                     value = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
 | |
|             }
 | |
| 
 | |
|             ((float*)(result->data.ptr + result->step*i))[j] = (float)value;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_TemplMatchTest::prepare_to_validation( int /*test_case_idx*/ )
 | |
| {
 | |
|     CvMat _input = test_mat[INPUT][0], _templ = test_mat[INPUT][1];
 | |
|     CvMat _output = test_mat[REF_OUTPUT][0];
 | |
|     cvTsMatchTemplate( &_input, &_templ, &_output, method );
 | |
| 
 | |
|     //if( ts->get_current_test_info()->test_case_idx == 0 )
 | |
|     /*{
 | |
|         CvFileStorage* fs = cvOpenFileStorage( "_match_template.yml", 0, CV_STORAGE_WRITE );
 | |
|         cvWrite( fs, "image", &test_mat[INPUT][0] );
 | |
|         cvWrite( fs, "template", &test_mat[INPUT][1] );
 | |
|         cvWrite( fs, "ref", &test_mat[REF_OUTPUT][0] );
 | |
|         cvWrite( fs, "opencv", &test_mat[OUTPUT][0] );
 | |
|         cvWriteInt( fs, "method", method );
 | |
|         cvReleaseFileStorage( &fs );
 | |
|     }*/
 | |
| 
 | |
|     if( method >= CV_TM_CCOEFF )
 | |
|     {
 | |
|         // avoid numerical stability problems in singular cases (when the results are near to 0)
 | |
|         const double delta = 10.;
 | |
|         test_mat[REF_OUTPUT][0] += Scalar::all(delta);
 | |
|         test_mat[OUTPUT][0] += Scalar::all(delta);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST(Imgproc_MatchTemplate, accuracy) { CV_TemplMatchTest test; test.safe_run(); }
 | 
