394 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| class CV_FindContourTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     enum { NUM_IMG = 4 };
 | |
| 
 | |
|     CV_FindContourTest();
 | |
|     ~CV_FindContourTest();
 | |
|     void clear();
 | |
| 
 | |
| protected:
 | |
|     int read_params( CvFileStorage* fs );
 | |
|     int prepare_test_case( int test_case_idx );
 | |
|     int validate_test_results( int test_case_idx );
 | |
|     void run_func();
 | |
| 
 | |
|     int min_blob_size, max_blob_size;
 | |
|     int blob_count, max_log_blob_count;
 | |
|     int retr_mode, approx_method;
 | |
| 
 | |
|     int min_log_img_size, max_log_img_size;
 | |
|     CvSize img_size;
 | |
|     int count, count2;
 | |
| 
 | |
|     IplImage* img[NUM_IMG];
 | |
|     CvMemStorage* storage;
 | |
|     CvSeq *contours, *contours2, *chain;
 | |
| };
 | |
| 
 | |
| 
 | |
| CV_FindContourTest::CV_FindContourTest()
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     test_case_count    = 300;
 | |
|     min_blob_size      = 1;
 | |
|     max_blob_size      = 50;
 | |
|     max_log_blob_count = 10;
 | |
| 
 | |
|     min_log_img_size   = 3;
 | |
|     max_log_img_size   = 10;
 | |
| 
 | |
|     for( i = 0; i < NUM_IMG; i++ )
 | |
|         img[i] = 0;
 | |
| 
 | |
|     storage = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| CV_FindContourTest::~CV_FindContourTest()
 | |
| {
 | |
|     clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_FindContourTest::clear()
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     cvtest::BaseTest::clear();
 | |
| 
 | |
|     for( i = 0; i < NUM_IMG; i++ )
 | |
|         cvReleaseImage( &img[i] );
 | |
| 
 | |
|     cvReleaseMemStorage( &storage );
 | |
| }
 | |
| 
 | |
| 
 | |
| int CV_FindContourTest::read_params( CvFileStorage* fs )
 | |
| {
 | |
|     int t;
 | |
|     int code = cvtest::BaseTest::read_params( fs );
 | |
| 
 | |
|     if( code < 0 )
 | |
|         return code;
 | |
| 
 | |
|     min_blob_size      = cvReadInt( find_param( fs, "min_blob_size" ), min_blob_size );
 | |
|     max_blob_size      = cvReadInt( find_param( fs, "max_blob_size" ), max_blob_size );
 | |
|     max_log_blob_count = cvReadInt( find_param( fs, "max_log_blob_count" ), max_log_blob_count );
 | |
|     min_log_img_size   = cvReadInt( find_param( fs, "min_log_img_size" ), min_log_img_size );
 | |
|     max_log_img_size   = cvReadInt( find_param( fs, "max_log_img_size" ), max_log_img_size );
 | |
| 
 | |
|     min_blob_size = cvtest::clipInt( min_blob_size, 1, 100 );
 | |
|     max_blob_size = cvtest::clipInt( max_blob_size, 1, 100 );
 | |
| 
 | |
|     if( min_blob_size > max_blob_size )
 | |
|         CV_SWAP( min_blob_size, max_blob_size, t );
 | |
| 
 | |
|     max_log_blob_count = cvtest::clipInt( max_log_blob_count, 1, 10 );
 | |
| 
 | |
|     min_log_img_size = cvtest::clipInt( min_log_img_size, 1, 10 );
 | |
|     max_log_img_size = cvtest::clipInt( max_log_img_size, 1, 10 );
 | |
| 
 | |
|     if( min_log_img_size > max_log_img_size )
 | |
|         CV_SWAP( min_log_img_size, max_log_img_size, t );
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| cvTsGenerateBlobImage( IplImage* img, int min_blob_size, int max_blob_size,
 | |
|                        int blob_count, int min_brightness, int max_brightness,
 | |
|                        RNG& rng )
 | |
| {
 | |
|     int i;
 | |
|     CvSize size;
 | |
| 
 | |
|     assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 );
 | |
| 
 | |
|     cvZero( img );
 | |
| 
 | |
|     // keep the border clear
 | |
|     cvSetImageROI( img, cvRect(1,1,img->width-2,img->height-2) );
 | |
|     size = cvGetSize( img );
 | |
| 
 | |
|     for( i = 0; i < blob_count; i++ )
 | |
|     {
 | |
|         CvPoint center;
 | |
|         CvSize  axes;
 | |
|         int angle = cvtest::randInt(rng) % 180;
 | |
|         int brightness = cvtest::randInt(rng) %
 | |
|                          (max_brightness - min_brightness) + min_brightness;
 | |
|         center.x = cvtest::randInt(rng) % size.width;
 | |
|         center.y = cvtest::randInt(rng) % size.height;
 | |
| 
 | |
|         axes.width = (cvtest::randInt(rng) %
 | |
|                      (max_blob_size - min_blob_size) + min_blob_size + 1)/2;
 | |
|         axes.height = (cvtest::randInt(rng) %
 | |
|                       (max_blob_size - min_blob_size) + min_blob_size + 1)/2;
 | |
| 
 | |
|         cvEllipse( img, center, axes, angle, 0, 360, cvScalar(brightness), CV_FILLED );
 | |
|     }
 | |
| 
 | |
|     cvResetImageROI( img );
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| cvTsMarkContours( IplImage* img, int val )
 | |
| {
 | |
|     int i, j;
 | |
|     int step = img->widthStep;
 | |
| 
 | |
|     assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 && (val&1) != 0);
 | |
| 
 | |
|     for( i = 1; i < img->height - 1; i++ )
 | |
|         for( j = 1; j < img->width - 1; j++ )
 | |
|         {
 | |
|             uchar* t = (uchar*)(img->imageData + img->widthStep*i + j);
 | |
|             if( *t == 1 && (t[-step] == 0 || t[-1] == 0 || t[1] == 0 || t[step] == 0))
 | |
|                 *t = (uchar)val;
 | |
|         }
 | |
| 
 | |
|     cvThreshold( img, img, val - 2, val, CV_THRESH_BINARY );
 | |
| }
 | |
| 
 | |
| 
 | |
| int CV_FindContourTest::prepare_test_case( int test_case_idx )
 | |
| {
 | |
|     RNG& rng = ts->get_rng();
 | |
|     const int  min_brightness = 0, max_brightness = 2;
 | |
|     int i, code = cvtest::BaseTest::prepare_test_case( test_case_idx );
 | |
| 
 | |
|     if( code < 0 )
 | |
|         return code;
 | |
| 
 | |
|     clear();
 | |
| 
 | |
|     blob_count = cvRound(exp(cvtest::randReal(rng)*max_log_blob_count*CV_LOG2));
 | |
| 
 | |
|     img_size.width = cvRound(exp((cvtest::randReal(rng)*
 | |
|         (max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2));
 | |
|     img_size.height = cvRound(exp((cvtest::randReal(rng)*
 | |
|         (max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2));
 | |
| 
 | |
|     approx_method = cvtest::randInt( rng ) % 4 + 1;
 | |
|     retr_mode = cvtest::randInt( rng ) % 4;
 | |
| 
 | |
|     storage = cvCreateMemStorage( 1 << 10 );
 | |
| 
 | |
|     for( i = 0; i < NUM_IMG; i++ )
 | |
|         img[i] = cvCreateImage( img_size, 8, 1 );
 | |
| 
 | |
|     cvTsGenerateBlobImage( img[0], min_blob_size, max_blob_size,
 | |
|         blob_count, min_brightness, max_brightness, rng );
 | |
| 
 | |
|     cvCopy( img[0], img[1] );
 | |
|     cvCopy( img[0], img[2] );
 | |
| 
 | |
|     cvTsMarkContours( img[1], 255 );
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_FindContourTest::run_func()
 | |
| {
 | |
|     contours = contours2 = chain = 0;
 | |
|     count = cvFindContours( img[2], storage, &contours, sizeof(CvContour), retr_mode, approx_method );
 | |
| 
 | |
|     cvZero( img[3] );
 | |
| 
 | |
|     if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
 | |
|         cvDrawContours( img[3], contours, cvScalar(255), cvScalar(255), INT_MAX, -1 );
 | |
| 
 | |
|     cvCopy( img[0], img[2] );
 | |
| 
 | |
|     count2 = cvFindContours( img[2], storage, &chain, sizeof(CvChain), retr_mode, CV_CHAIN_CODE );
 | |
| 
 | |
|     if( chain )
 | |
|         contours2 = cvApproxChains( chain, storage, approx_method, 0, 0, 1 );
 | |
| 
 | |
|     cvZero( img[2] );
 | |
| 
 | |
|     if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
 | |
|         cvDrawContours( img[2], contours2, cvScalar(255), cvScalar(255), INT_MAX );
 | |
| }
 | |
| 
 | |
| 
 | |
| // the whole testing is done here, run_func() is not utilized in this test
 | |
| int CV_FindContourTest::validate_test_results( int /*test_case_idx*/ )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
| 
 | |
|     cvCmpS( img[0], 0, img[0], CV_CMP_GT );
 | |
| 
 | |
|     if( count != count2 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "The number of contours retrieved with different "
 | |
|             "approximation methods is not the same\n"
 | |
|             "(%d contour(s) for method %d vs %d contour(s) for method %d)\n",
 | |
|             count, approx_method, count2, CV_CHAIN_CODE );
 | |
|         code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|     }
 | |
| 
 | |
|     if( retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
 | |
|     {
 | |
|         Mat _img[4];
 | |
|         for( int i = 0; i < 4; i++ )
 | |
|             _img[i] = cvarrToMat(img[i]);
 | |
| 
 | |
|         code = cvtest::cmpEps2(ts, _img[0], _img[3], 0, true, "Comparing original image with the map of filled contours" );
 | |
| 
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         code = cvtest::cmpEps2( ts, _img[1], _img[2], 0, true,
 | |
|             "Comparing contour outline vs manually produced edge map" );
 | |
| 
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
|     }
 | |
| 
 | |
|     if( contours )
 | |
|     {
 | |
|         CvTreeNodeIterator iterator1;
 | |
|         CvTreeNodeIterator iterator2;
 | |
|         int count3;
 | |
| 
 | |
|         for(int i = 0; i < 2; i++ )
 | |
|         {
 | |
|             CvTreeNodeIterator iterator;
 | |
|             cvInitTreeNodeIterator( &iterator, i == 0 ? contours : contours2, INT_MAX );
 | |
| 
 | |
|             for( count3 = 0; cvNextTreeNode( &iterator ) != 0; count3++ )
 | |
|                 ;
 | |
| 
 | |
|             if( count3 != count )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG,
 | |
|                     "The returned number of retrieved contours (using the approx_method = %d) does not match\n"
 | |
|                     "to the actual number of contours in the tree/list (returned %d, actual %d)\n",
 | |
|                     i == 0 ? approx_method : 0, count, count3 );
 | |
|                 code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|                 goto _exit_;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cvInitTreeNodeIterator( &iterator1, contours, INT_MAX );
 | |
|         cvInitTreeNodeIterator( &iterator2, contours2, INT_MAX );
 | |
| 
 | |
|         for( count3 = 0; count3 < count; count3++ )
 | |
|         {
 | |
|             CvSeq* seq1 = (CvSeq*)cvNextTreeNode( &iterator1 );
 | |
|             CvSeq* seq2 = (CvSeq*)cvNextTreeNode( &iterator2 );
 | |
|             CvSeqReader reader1;
 | |
|             CvSeqReader reader2;
 | |
| 
 | |
|             if( !seq1 || !seq2 )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG,
 | |
|                     "There are NULL pointers in the original contour tree or the "
 | |
|                     "tree produced by cvApproxChains\n" );
 | |
|                 code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|                 goto _exit_;
 | |
|             }
 | |
| 
 | |
|             cvStartReadSeq( seq1, &reader1 );
 | |
|             cvStartReadSeq( seq2, &reader2 );
 | |
| 
 | |
|             if( seq1->total != seq2->total )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG,
 | |
|                     "The original contour #%d has %d points, while the corresponding contour has %d point\n",
 | |
|                     count3, seq1->total, seq2->total );
 | |
|                 code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|                 goto _exit_;
 | |
|             }
 | |
| 
 | |
|             for(int i = 0; i < seq1->total; i++ )
 | |
|             {
 | |
|                 CvPoint pt1;
 | |
|                 CvPoint pt2;
 | |
| 
 | |
|                 CV_READ_SEQ_ELEM( pt1, reader1 );
 | |
|                 CV_READ_SEQ_ELEM( pt2, reader2 );
 | |
| 
 | |
|                 if( pt1.x != pt2.x || pt1.y != pt2.y )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG,
 | |
|                     "The point #%d in the contour #%d is different from the corresponding point "
 | |
|                     "in the approximated chain ((%d,%d) vs (%d,%d)", count3, i, pt1.x, pt1.y, pt2.x, pt2.y );
 | |
|                     code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|                     goto _exit_;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| _exit_:
 | |
|     if( code < 0 )
 | |
|     {
 | |
| #if 0
 | |
|         cvNamedWindow( "test", 0 );
 | |
|         cvShowImage( "test", img[0] );
 | |
|         cvWaitKey();
 | |
| #endif
 | |
|         ts->set_failed_test_info( code );
 | |
|     }
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(Imgproc_FindContours, accuracy) { CV_FindContourTest test; test.safe_run(); }
 | |
| 
 | |
| /* End of file. */
 | 
