1676 lines
50 KiB
C++
1676 lines
50 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifdef HAVE_VECLIB
|
|
#include <vecLib/clapack.h>
|
|
|
|
typedef __CLPK_integer integer;
|
|
typedef __CLPK_real real;
|
|
#else
|
|
#include "clapack.h"
|
|
#endif
|
|
|
|
#undef abs
|
|
#undef max
|
|
#undef min
|
|
|
|
namespace cv
|
|
{
|
|
|
|
/****************************************************************************************\
|
|
* LU & Cholesky implementation for small matrices *
|
|
\****************************************************************************************/
|
|
|
|
template<typename _Tp> static inline int LUImpl(_Tp* A, int m, _Tp* b, int n)
|
|
{
|
|
int i, j, k, p = 1;
|
|
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
k = i;
|
|
|
|
for( j = i+1; j < m; j++ )
|
|
if( std::abs(A[j*m + i]) > std::abs(A[k*m + i]) )
|
|
k = j;
|
|
|
|
if( std::abs(A[k*m + i]) < std::numeric_limits<_Tp>::epsilon() )
|
|
return 0;
|
|
|
|
if( k != i )
|
|
{
|
|
for( j = i; j < m; j++ )
|
|
std::swap(A[i*m + j], A[k*m + j]);
|
|
if( b )
|
|
for( j = 0; j < n; j++ )
|
|
std::swap(b[i*n + j], b[k*n + j]);
|
|
p = -p;
|
|
}
|
|
|
|
_Tp d = -1/A[i*m + i];
|
|
|
|
for( j = i+1; j < m; j++ )
|
|
{
|
|
_Tp alpha = A[j*m + i]*d;
|
|
|
|
for( k = i+1; k < m; k++ )
|
|
A[j*m + k] += alpha*A[i*m + k];
|
|
|
|
if( b )
|
|
for( k = 0; k < n; k++ )
|
|
b[j*n + k] += alpha*b[i*n + k];
|
|
}
|
|
|
|
A[i*m + i] = -d;
|
|
}
|
|
|
|
if( b )
|
|
{
|
|
for( i = m-1; i >= 0; i-- )
|
|
for( j = 0; j < n; j++ )
|
|
{
|
|
_Tp s = b[i*n + j];
|
|
for( k = i+1; k < m; k++ )
|
|
s -= A[i*m + k]*b[k*n + j];
|
|
b[i*n + j] = s*A[i*m + i];
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
int LU(float* A, int m, float* b, int n)
|
|
{
|
|
return LUImpl(A, m, b, n);
|
|
}
|
|
|
|
|
|
int LU(double* A, int m, double* b, int n)
|
|
{
|
|
return LUImpl(A, m, b, n);
|
|
}
|
|
|
|
|
|
template<typename _Tp> static inline bool CholImpl(_Tp* A, int m, _Tp* b, int n)
|
|
{
|
|
_Tp* L = A;
|
|
int i, j, k;
|
|
double s;
|
|
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
for( j = 0; j < i; j++ )
|
|
{
|
|
s = A[i*m + j];
|
|
for( k = 0; k < j; k++ )
|
|
s -= L[i*m + k]*L[j*m + k];
|
|
L[i*m + j] = (_Tp)(s*L[j*m + j]);
|
|
}
|
|
s = A[i*m + i];
|
|
for( k = 0; k < j; k++ )
|
|
{
|
|
double t = L[i*m + k];
|
|
s -= t*t;
|
|
}
|
|
if( s < std::numeric_limits<_Tp>::epsilon() )
|
|
return 0;
|
|
L[i*m + i] = (_Tp)(1./std::sqrt(s));
|
|
}
|
|
|
|
if( !b )
|
|
return false;
|
|
|
|
// LLt x = b
|
|
// 1: L y = b
|
|
// 2. Lt x = y
|
|
|
|
/*
|
|
[ L00 ] y0 b0
|
|
[ L10 L11 ] y1 = b1
|
|
[ L20 L21 L22 ] y2 b2
|
|
[ L30 L31 L32 L33 ] y3 b3
|
|
|
|
[ L00 L10 L20 L30 ] x0 y0
|
|
[ L11 L21 L31 ] x1 = y1
|
|
[ L22 L32 ] x2 y2
|
|
[ L33 ] x3 y3
|
|
*/
|
|
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
for( j = 0; j < n; j++ )
|
|
{
|
|
s = b[i*n + j];
|
|
for( k = 0; k < i; k++ )
|
|
s -= L[i*m + k]*b[k*n + j];
|
|
b[i*n + j] = (_Tp)(s*L[i*m + i]);
|
|
}
|
|
}
|
|
|
|
for( i = m-1; i >= 0; i-- )
|
|
{
|
|
for( j = 0; j < n; j++ )
|
|
{
|
|
s = b[i*n + j];
|
|
for( k = m-1; k > i; k-- )
|
|
s -= L[k*m + i]*b[k*n + j];
|
|
b[i*n + j] = (_Tp)(s*L[i*m + i]);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Cholesky(float* A, int m, float* b, int n)
|
|
{
|
|
return CholImpl(A, m, b, n);
|
|
}
|
|
|
|
bool Cholesky(double* A, int m, double* b, int n)
|
|
{
|
|
return CholImpl(A, m, b, n);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Determinant of the matrix *
|
|
\****************************************************************************************/
|
|
|
|
#define det2(m) (m(0,0)*m(1,1) - m(0,1)*m(1,0))
|
|
#define det3(m) (m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - \
|
|
m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + \
|
|
m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0)))
|
|
|
|
double determinant( const Mat& mat )
|
|
{
|
|
double result = 0;
|
|
int type = mat.type(), rows = mat.rows;
|
|
size_t step = mat.step;
|
|
const uchar* m = mat.data;
|
|
|
|
CV_Assert( mat.rows == mat.cols && (type == CV_32F || type == CV_64F));
|
|
|
|
#define Mf(y, x) ((float*)(m + y*step))[x]
|
|
#define Md(y, x) ((double*)(m + y*step))[x]
|
|
|
|
if( rows <= 10 )
|
|
{
|
|
if( type == CV_32F )
|
|
{
|
|
if( rows == 2 )
|
|
result = det2(Mf);
|
|
else if( rows == 3 )
|
|
result = det3(Mf);
|
|
else if( rows == 1 )
|
|
result = Mf(0,0);
|
|
else
|
|
{
|
|
size_t bufSize = rows*rows*sizeof(float);
|
|
AutoBuffer<uchar> buffer(bufSize);
|
|
Mat a(rows, rows, CV_32F, (uchar*)buffer);
|
|
mat.copyTo(a);
|
|
|
|
result = LU((float*)a.data, rows, 0, 0);
|
|
if( result )
|
|
{
|
|
for( int i = 0; i < rows; i++ )
|
|
result *= ((const float*)(a.data + a.step*i))[i];
|
|
result = 1./result;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( rows == 2 )
|
|
result = det2(Md);
|
|
else if( rows == 3 )
|
|
result = det3(Md);
|
|
else if( rows == 1 )
|
|
result = Md(0,0);
|
|
else
|
|
{
|
|
size_t bufSize = rows*rows*sizeof(double);
|
|
AutoBuffer<uchar> buffer(bufSize);
|
|
Mat a(rows, rows, CV_64F, (uchar*)buffer);
|
|
mat.copyTo(a);
|
|
|
|
result = LU((double*)a.data, rows, 0, 0);
|
|
if( result )
|
|
{
|
|
for( int i = 0; i < rows; i++ )
|
|
result *= ((const double*)(a.data + a.step*i))[i];
|
|
result = 1./result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
integer i, n = rows, *ipiv, info=0, sign = 0;
|
|
size_t bufSize = n*n*sizeof(double) + (n+1)*sizeof(ipiv[0]);
|
|
AutoBuffer<uchar> buffer(bufSize);
|
|
|
|
Mat a(n, n, CV_64F, (uchar*)buffer);
|
|
mat.convertTo(a, CV_64F);
|
|
|
|
ipiv = (integer*)cvAlignPtr(a.data + a.step*a.rows, sizeof(integer));
|
|
dgetrf_(&n, &n, (double*)a.data, &n, ipiv, &info);
|
|
assert(info >= 0);
|
|
|
|
if( info == 0 )
|
|
{
|
|
result = 1;
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
result *= ((double*)a.data)[i*(n+1)];
|
|
sign ^= ipiv[i] != i+1;
|
|
}
|
|
result *= sign ? -1 : 1;
|
|
}
|
|
}
|
|
|
|
#undef Mf
|
|
#undef Md
|
|
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Inverse (or pseudo-inverse) of a matrix *
|
|
\****************************************************************************************/
|
|
|
|
#define Sf( y, x ) ((float*)(srcdata + y*srcstep))[x]
|
|
#define Sd( y, x ) ((double*)(srcdata + y*srcstep))[x]
|
|
#define Df( y, x ) ((float*)(dstdata + y*dststep))[x]
|
|
#define Dd( y, x ) ((double*)(dstdata + y*dststep))[x]
|
|
|
|
double invert( const Mat& src, Mat& dst, int method )
|
|
{
|
|
double result = 0;
|
|
int type = src.type();
|
|
|
|
CV_Assert( method == DECOMP_LU || method == DECOMP_CHOLESKY || method == DECOMP_SVD );
|
|
|
|
if( method == DECOMP_SVD )
|
|
{
|
|
int n = std::min(src.rows, src.cols);
|
|
SVD svd(src);
|
|
svd.backSubst(Mat(), dst);
|
|
|
|
return type == CV_32F ?
|
|
(((float*)svd.w.data)[0] >= FLT_EPSILON ?
|
|
((float*)svd.w.data)[n-1]/((float*)svd.w.data)[0] : 0) :
|
|
(((double*)svd.w.data)[0] >= DBL_EPSILON ?
|
|
((double*)svd.w.data)[n-1]/((double*)svd.w.data)[0] : 0);
|
|
}
|
|
|
|
CV_Assert( src.rows == src.cols && (type == CV_32F || type == CV_64F));
|
|
dst.create( src.rows, src.cols, type );
|
|
|
|
if( src.rows <= 3 )
|
|
{
|
|
uchar* srcdata = src.data;
|
|
uchar* dstdata = dst.data;
|
|
size_t srcstep = src.step;
|
|
size_t dststep = dst.step;
|
|
|
|
if( src.rows == 2 )
|
|
{
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = det2(Sf);
|
|
if( d != 0. )
|
|
{
|
|
double t0, t1;
|
|
result = d;
|
|
d = 1./d;
|
|
t0 = Sf(0,0)*d;
|
|
t1 = Sf(1,1)*d;
|
|
Df(1,1) = (float)t0;
|
|
Df(0,0) = (float)t1;
|
|
t0 = -Sf(0,1)*d;
|
|
t1 = -Sf(1,0)*d;
|
|
Df(0,1) = (float)t0;
|
|
Df(1,0) = (float)t1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double d = det2(Sd);
|
|
if( d != 0. )
|
|
{
|
|
double t0, t1;
|
|
result = d;
|
|
d = 1./d;
|
|
t0 = Sd(0,0)*d;
|
|
t1 = Sd(1,1)*d;
|
|
Dd(1,1) = t0;
|
|
Dd(0,0) = t1;
|
|
t0 = -Sd(0,1)*d;
|
|
t1 = -Sd(1,0)*d;
|
|
Dd(0,1) = t0;
|
|
Dd(1,0) = t1;
|
|
}
|
|
}
|
|
}
|
|
else if( src.rows == 3 )
|
|
{
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = det3(Sf);
|
|
if( d != 0. )
|
|
{
|
|
float t[9];
|
|
result = d;
|
|
d = 1./d;
|
|
|
|
t[0] = (float)((Sf(1,1) * Sf(2,2) - Sf(1,2) * Sf(2,1)) * d);
|
|
t[1] = (float)((Sf(0,2) * Sf(2,1) - Sf(0,1) * Sf(2,2)) * d);
|
|
t[2] = (float)((Sf(0,1) * Sf(1,2) - Sf(0,2) * Sf(1,1)) * d);
|
|
|
|
t[3] = (float)((Sf(1,2) * Sf(2,0) - Sf(1,0) * Sf(2,2)) * d);
|
|
t[4] = (float)((Sf(0,0) * Sf(2,2) - Sf(0,2) * Sf(2,0)) * d);
|
|
t[5] = (float)((Sf(0,2) * Sf(1,0) - Sf(0,0) * Sf(1,2)) * d);
|
|
|
|
t[6] = (float)((Sf(1,0) * Sf(2,1) - Sf(1,1) * Sf(2,0)) * d);
|
|
t[7] = (float)((Sf(0,1) * Sf(2,0) - Sf(0,0) * Sf(2,1)) * d);
|
|
t[8] = (float)((Sf(0,0) * Sf(1,1) - Sf(0,1) * Sf(1,0)) * d);
|
|
|
|
Df(0,0) = t[0]; Df(0,1) = t[1]; Df(0,2) = t[2];
|
|
Df(1,0) = t[3]; Df(1,1) = t[4]; Df(1,2) = t[5];
|
|
Df(2,0) = t[6]; Df(2,1) = t[7]; Df(2,2) = t[8];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double d = det3(Sd);
|
|
if( d != 0. )
|
|
{
|
|
double t[9];
|
|
result = d;
|
|
d = 1./d;
|
|
|
|
t[0] = (Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1)) * d;
|
|
t[1] = (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2)) * d;
|
|
t[2] = (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1)) * d;
|
|
|
|
t[3] = (Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2)) * d;
|
|
t[4] = (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0)) * d;
|
|
t[5] = (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2)) * d;
|
|
|
|
t[6] = (Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0)) * d;
|
|
t[7] = (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1)) * d;
|
|
t[8] = (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0)) * d;
|
|
|
|
Dd(0,0) = t[0]; Dd(0,1) = t[1]; Dd(0,2) = t[2];
|
|
Dd(1,0) = t[3]; Dd(1,1) = t[4]; Dd(1,2) = t[5];
|
|
Dd(2,0) = t[6]; Dd(2,1) = t[7]; Dd(2,2) = t[8];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert( src.rows == 1 );
|
|
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = Sf(0,0);
|
|
if( d != 0. )
|
|
{
|
|
result = d;
|
|
Df(0,0) = (float)(1./d);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double d = Sd(0,0);
|
|
if( d != 0. )
|
|
{
|
|
result = d;
|
|
Dd(0,0) = 1./d;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if( dst.cols <= 10 )
|
|
{
|
|
int n = dst.cols, elem_size = CV_ELEM_SIZE(type);
|
|
AutoBuffer<uchar> buf(n*n*2*elem_size);
|
|
Mat src1(n, n, type, (uchar*)buf);
|
|
Mat dst1(n, n, type, dst.isContinuous() ? dst.data : src1.data + n*n*elem_size);
|
|
src.copyTo(src1);
|
|
setIdentity(dst1);
|
|
|
|
if( method == DECOMP_LU && type == CV_32F )
|
|
result = LU((float*)src1.data, n, (float*)dst1.data, n);
|
|
else if( method == DECOMP_LU && type == CV_64F )
|
|
result = LU((double*)src1.data, n, (double*)dst1.data, n);
|
|
else if( method == DECOMP_LU && type == CV_32F )
|
|
result = Cholesky((float*)src1.data, n, (float*)dst1.data, n);
|
|
else
|
|
result = Cholesky((double*)src1.data, n, (double*)dst1.data, n);
|
|
dst1.copyTo(dst);
|
|
result = std::abs(result);
|
|
}
|
|
else
|
|
{
|
|
integer n = dst.cols, lwork=-1, lda = n, piv1=0, info=0;
|
|
int t_size = type == CV_32F ? n*n*sizeof(double) : 0;
|
|
int buf_size = t_size;
|
|
AutoBuffer<uchar> buf;
|
|
|
|
if( method == DECOMP_LU )
|
|
{
|
|
double work1 = 0;
|
|
dgetri_(&n, (double*)dst.data, &lda, &piv1, &work1, &lwork, &info);
|
|
lwork = cvRound(work1);
|
|
|
|
buf_size += (int)(n*sizeof(integer) + (lwork + 1)*sizeof(double));
|
|
buf.allocate(buf_size);
|
|
uchar* buffer = (uchar*)buf;
|
|
|
|
Mat arr = dst;
|
|
if( type == CV_32F )
|
|
{
|
|
arr = Mat(n, n, CV_64F, buffer);
|
|
src.convertTo(arr, CV_64F);
|
|
buffer += t_size;
|
|
}
|
|
else
|
|
{
|
|
src.copyTo(arr);
|
|
lda = (integer)(arr.step/sizeof(double));
|
|
}
|
|
|
|
dgetrf_(&n, &n, (double*)arr.data, &lda, (integer*)buffer, &info);
|
|
if(info==0)
|
|
dgetri_(&n, (double*)arr.data, &lda, (integer*)buffer,
|
|
(double*)cvAlignPtr(buffer + n*sizeof(integer), sizeof(double)),
|
|
&lwork, &info);
|
|
if(info==0 && arr.data != dst.data)
|
|
arr.convertTo(dst, dst.type());
|
|
}
|
|
else if( method == DECOMP_CHOLESKY )
|
|
{
|
|
Mat arr = dst;
|
|
if( type == CV_32F )
|
|
{
|
|
buf.allocate(buf_size);
|
|
arr = Mat(n, n, CV_64F, (uchar*)buf);
|
|
src.convertTo(arr, CV_64F);
|
|
}
|
|
else
|
|
{
|
|
src.copyTo(arr);
|
|
lda = (integer)(arr.step/sizeof(double));
|
|
}
|
|
|
|
char L[] = {'L', '\0'};
|
|
dpotrf_(L, &n, (double*)arr.data, &lda, &info);
|
|
if(info==0)
|
|
dpotri_(L, &n, (double*)arr.data, &lda, &info);
|
|
if(info==0)
|
|
{
|
|
completeSymm(arr);
|
|
if( arr.data != dst.data )
|
|
arr.convertTo(dst, dst.type());
|
|
}
|
|
}
|
|
result = info == 0;
|
|
}
|
|
|
|
if( !result )
|
|
dst = Scalar(0);
|
|
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Solving a linear system *
|
|
\****************************************************************************************/
|
|
|
|
bool solve( const Mat& src, const Mat& _src2, Mat& dst, int method )
|
|
{
|
|
bool result = true;
|
|
int type = src.type();
|
|
bool is_normal = (method & DECOMP_NORMAL) != 0;
|
|
|
|
CV_Assert( type == _src2.type() && (type == CV_32F || type == CV_64F) );
|
|
|
|
method &= ~DECOMP_NORMAL;
|
|
CV_Assert( (method != DECOMP_LU && method != DECOMP_CHOLESKY) ||
|
|
is_normal || src.rows == src.cols );
|
|
|
|
// check case of a single equation and small matrix
|
|
if( (method == DECOMP_LU || method == DECOMP_CHOLESKY) &&
|
|
src.rows <= 3 && src.rows == src.cols && _src2.cols == 1 )
|
|
{
|
|
dst.create( src.cols, _src2.cols, src.type() );
|
|
|
|
#define bf(y) ((float*)(bdata + y*src2step))[0]
|
|
#define bd(y) ((double*)(bdata + y*src2step))[0]
|
|
|
|
uchar* srcdata = src.data;
|
|
uchar* bdata = _src2.data;
|
|
uchar* dstdata = dst.data;
|
|
size_t srcstep = src.step;
|
|
size_t src2step = _src2.step;
|
|
size_t dststep = dst.step;
|
|
|
|
if( src.rows == 2 )
|
|
{
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = det2(Sf);
|
|
if( d != 0. )
|
|
{
|
|
float t;
|
|
d = 1./d;
|
|
t = (float)((bf(0)*Sf(1,1) - bf(1)*Sf(0,1))*d);
|
|
Df(1,0) = (float)((bf(1)*Sf(0,0) - bf(0)*Sf(1,0))*d);
|
|
Df(0,0) = t;
|
|
}
|
|
else
|
|
result = false;
|
|
}
|
|
else
|
|
{
|
|
double d = det2(Sd);
|
|
if( d != 0. )
|
|
{
|
|
double t;
|
|
d = 1./d;
|
|
t = (bd(0)*Sd(1,1) - bd(1)*Sd(0,1))*d;
|
|
Dd(1,0) = (bd(1)*Sd(0,0) - bd(0)*Sd(1,0))*d;
|
|
Dd(0,0) = t;
|
|
}
|
|
else
|
|
result = false;
|
|
}
|
|
}
|
|
else if( src.rows == 3 )
|
|
{
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = det3(Sf);
|
|
if( d != 0. )
|
|
{
|
|
float t[3];
|
|
d = 1./d;
|
|
|
|
t[0] = (float)(d*
|
|
(bf(0)*(Sf(1,1)*Sf(2,2) - Sf(1,2)*Sf(2,1)) -
|
|
Sf(0,1)*(bf(1)*Sf(2,2) - Sf(1,2)*bf(2)) +
|
|
Sf(0,2)*(bf(1)*Sf(2,1) - Sf(1,1)*bf(2))));
|
|
|
|
t[1] = (float)(d*
|
|
(Sf(0,0)*(bf(1)*Sf(2,2) - Sf(1,2)*bf(2)) -
|
|
bf(0)*(Sf(1,0)*Sf(2,2) - Sf(1,2)*Sf(2,0)) +
|
|
Sf(0,2)*(Sf(1,0)*bf(2) - bf(1)*Sf(2,0))));
|
|
|
|
t[2] = (float)(d*
|
|
(Sf(0,0)*(Sf(1,1)*bf(2) - bf(1)*Sf(2,1)) -
|
|
Sf(0,1)*(Sf(1,0)*bf(2) - bf(1)*Sf(2,0)) +
|
|
bf(0)*(Sf(1,0)*Sf(2,1) - Sf(1,1)*Sf(2,0))));
|
|
|
|
Df(0,0) = t[0];
|
|
Df(1,0) = t[1];
|
|
Df(2,0) = t[2];
|
|
}
|
|
else
|
|
result = false;
|
|
}
|
|
else
|
|
{
|
|
double d = det3(Sd);
|
|
if( d != 0. )
|
|
{
|
|
double t[9];
|
|
|
|
d = 1./d;
|
|
|
|
t[0] = ((Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1))*bd(0) +
|
|
(Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2))*bd(1) +
|
|
(Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1))*bd(2))*d;
|
|
|
|
t[1] = ((Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2))*bd(0) +
|
|
(Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0))*bd(1) +
|
|
(Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2))*bd(2))*d;
|
|
|
|
t[2] = ((Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0))*bd(0) +
|
|
(Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1))*bd(1) +
|
|
(Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0))*bd(2))*d;
|
|
|
|
Dd(0,0) = t[0];
|
|
Dd(1,0) = t[1];
|
|
Dd(2,0) = t[2];
|
|
}
|
|
else
|
|
result = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert( src.rows == 1 );
|
|
|
|
if( type == CV_32FC1 )
|
|
{
|
|
double d = Sf(0,0);
|
|
if( d != 0. )
|
|
Df(0,0) = (float)(bf(0)/d);
|
|
else
|
|
result = false;
|
|
}
|
|
else
|
|
{
|
|
double d = Sd(0,0);
|
|
if( d != 0. )
|
|
Dd(0,0) = (bd(0)/d);
|
|
else
|
|
result = false;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double rcond=-1, s1=0, work1=0, *work=0, *s=0;
|
|
float frcond=-1, fs1=0, fwork1=0, *fwork=0, *fs=0;
|
|
integer m = src.rows, m_ = m, n = src.cols, mn = std::max(m,n),
|
|
nm = std::min(m, n), nb = _src2.cols, lwork=-1, liwork=0, iwork1=0,
|
|
lda = m, ldx = mn, info=0, rank=0, *iwork=0;
|
|
int elem_size = CV_ELEM_SIZE(type);
|
|
bool copy_rhs=false;
|
|
int buf_size=0;
|
|
AutoBuffer<uchar> buffer;
|
|
uchar* ptr;
|
|
char N[] = {'N', '\0'}, L[] = {'L', '\0'};
|
|
|
|
Mat src2 = _src2;
|
|
dst.create( src.cols, src2.cols, src.type() );
|
|
|
|
if( m <= n )
|
|
is_normal = false;
|
|
else if( is_normal )
|
|
m_ = n;
|
|
|
|
buf_size += (is_normal ? n*n : m*n)*elem_size;
|
|
|
|
if( m_ != n || nb > 1 || !dst.isContinuous() )
|
|
{
|
|
copy_rhs = true;
|
|
if( is_normal )
|
|
buf_size += n*nb*elem_size;
|
|
else
|
|
buf_size += mn*nb*elem_size;
|
|
}
|
|
|
|
if( method == DECOMP_SVD || method == DECOMP_EIG )
|
|
{
|
|
integer nlvl = cvRound(std::log(std::max(std::min(m_,n)/25., 1.))/CV_LOG2) + 1;
|
|
liwork = std::min(m_,n)*(3*std::max(nlvl,(integer)0) + 11);
|
|
|
|
if( type == CV_32F )
|
|
sgelsd_(&m_, &n, &nb, (float*)src.data, &lda, (float*)dst.data, &ldx,
|
|
&fs1, &frcond, &rank, &fwork1, &lwork, &iwork1, &info);
|
|
else
|
|
dgelsd_(&m_, &n, &nb, (double*)src.data, &lda, (double*)dst.data, &ldx,
|
|
&s1, &rcond, &rank, &work1, &lwork, &iwork1, &info );
|
|
buf_size += nm*elem_size + (liwork + 1)*sizeof(integer);
|
|
}
|
|
else if( method == DECOMP_QR )
|
|
{
|
|
if( type == CV_32F )
|
|
sgels_(N, &m_, &n, &nb, (float*)src.data, &lda,
|
|
(float*)dst.data, &ldx, &fwork1, &lwork, &info );
|
|
else
|
|
dgels_(N, &m_, &n, &nb, (double*)src.data, &lda,
|
|
(double*)dst.data, &ldx, &work1, &lwork, &info );
|
|
}
|
|
else if( method == DECOMP_LU )
|
|
{
|
|
buf_size += (n+1)*sizeof(integer);
|
|
}
|
|
else if( method == DECOMP_CHOLESKY )
|
|
;
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown method" );
|
|
assert(info == 0);
|
|
|
|
lwork = cvRound(type == CV_32F ? (double)fwork1 : work1);
|
|
buf_size += lwork*elem_size;
|
|
buffer.allocate(buf_size);
|
|
ptr = (uchar*)buffer;
|
|
|
|
Mat at(n, m_, type, ptr);
|
|
ptr += n*m_*elem_size;
|
|
|
|
if( method == DECOMP_CHOLESKY || method == DECOMP_EIG )
|
|
src.copyTo(at);
|
|
else if( !is_normal )
|
|
transpose(src, at);
|
|
else
|
|
mulTransposed(src, at, true);
|
|
|
|
Mat xt;
|
|
if( !is_normal )
|
|
{
|
|
if( copy_rhs )
|
|
{
|
|
Mat temp(nb, mn, type, ptr);
|
|
ptr += nb*mn*elem_size;
|
|
Mat bt = temp.colRange(0, m);
|
|
xt = temp.colRange(0, n);
|
|
transpose(src2, bt);
|
|
}
|
|
else
|
|
{
|
|
src2.copyTo(dst);
|
|
xt = Mat(1, n, type, dst.data);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( copy_rhs )
|
|
{
|
|
xt = Mat(nb, n, type, ptr);
|
|
ptr += nb*n*elem_size;
|
|
}
|
|
else
|
|
xt = Mat(1, n, type, dst.data);
|
|
// (a'*b)' = b'*a
|
|
gemm( src2, src, 1, Mat(), 0, xt, GEMM_1_T );
|
|
}
|
|
|
|
lda = (int)(at.step ? at.step/elem_size : at.cols);
|
|
ldx = (int)(xt.step ? xt.step/elem_size : (!is_normal && copy_rhs ? mn : n));
|
|
|
|
if( method == DECOMP_SVD || method == DECOMP_EIG )
|
|
{
|
|
if( type == CV_32F )
|
|
{
|
|
fs = (float*)ptr;
|
|
ptr += nm*elem_size;
|
|
fwork = (float*)ptr;
|
|
ptr += lwork*elem_size;
|
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer));
|
|
|
|
sgelsd_(&m_, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx,
|
|
fs, &frcond, &rank, fwork, &lwork, iwork, &info);
|
|
}
|
|
else
|
|
{
|
|
s = (double*)ptr;
|
|
ptr += nm*elem_size;
|
|
work = (double*)ptr;
|
|
ptr += lwork*elem_size;
|
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer));
|
|
|
|
dgelsd_(&m_, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx,
|
|
s, &rcond, &rank, work, &lwork, iwork, &info);
|
|
}
|
|
}
|
|
else if( method == CV_QR )
|
|
{
|
|
if( type == CV_32F )
|
|
{
|
|
fwork = (float*)ptr;
|
|
sgels_(N, &m_, &n, &nb, (float*)at.data, &lda,
|
|
(float*)xt.data, &ldx, fwork, &lwork, &info);
|
|
}
|
|
else
|
|
{
|
|
work = (double*)ptr;
|
|
dgels_(N, &m_, &n, &nb, (double*)at.data, &lda,
|
|
(double*)xt.data, &ldx, work, &lwork, &info);
|
|
}
|
|
}
|
|
else if( method == CV_CHOLESKY || (method == CV_LU && is_normal) )
|
|
{
|
|
if( type == CV_32F )
|
|
{
|
|
spotrf_(L, &n, (float*)at.data, &lda, &info);
|
|
if(info==0)
|
|
spotrs_(L, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx, &info);
|
|
}
|
|
else
|
|
{
|
|
dpotrf_(L, &n, (double*)at.data, &lda, &info);
|
|
if(info==0)
|
|
dpotrs_(L, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx, &info);
|
|
}
|
|
}
|
|
else if( method == CV_LU )
|
|
{
|
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer));
|
|
if( type == CV_32F )
|
|
sgesv_(&n, &nb, (float*)at.data, &lda, iwork, (float*)xt.data, &ldx, &info );
|
|
else
|
|
dgesv_(&n, &nb, (double*)at.data, &lda, iwork, (double*)xt.data, &ldx, &info );
|
|
}
|
|
else
|
|
assert(0);
|
|
result = info == 0;
|
|
|
|
if( !result )
|
|
dst = Scalar(0);
|
|
else if( xt.data != dst.data )
|
|
transpose( xt, dst );
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix ///////////////
|
|
|
|
template<typename Real> static inline Real hypot(Real a, Real b)
|
|
{
|
|
a = std::abs(a);
|
|
b = std::abs(b);
|
|
Real f;
|
|
if( a > b )
|
|
{
|
|
f = b/a;
|
|
return a*std::sqrt(1 + f*f);
|
|
}
|
|
if( b == 0 )
|
|
return 0;
|
|
f = a/b;
|
|
return b*std::sqrt(1 + f*f);
|
|
}
|
|
|
|
|
|
template<typename Real> bool jacobi(const Mat& _S0, Mat& _e, Mat& matE, bool computeEvects, Real eps)
|
|
{
|
|
int n = _S0.cols, i, j, k, m;
|
|
|
|
if( computeEvects )
|
|
matE = Mat::eye(n, n, _S0.type());
|
|
|
|
int iters, maxIters = n*n*30;
|
|
|
|
AutoBuffer<uchar> buf(n*2*sizeof(int) + (n*n+n*2+1)*sizeof(Real));
|
|
Real* S = alignPtr((Real*)(uchar*)buf, sizeof(Real));
|
|
Real* maxSR = S + n*n;
|
|
Real* maxSC = maxSR + n;
|
|
int* indR = (int*)(maxSC + n);
|
|
int* indC = indR + n;
|
|
|
|
Mat matS(_S0.size(), _S0.type(), S);
|
|
_S0.copyTo(matS);
|
|
|
|
Real mv;
|
|
Real* E = (Real*)matE.data;
|
|
Real* e = (Real*)_e.data;
|
|
int Sstep = (int)(matS.step/sizeof(Real));
|
|
int estep = _e.rows == 1 ? 1 : (int)(_e.step/sizeof(Real));
|
|
int Estep = (int)(matE.step/sizeof(Real));
|
|
|
|
for( k = 0; k < n; k++ )
|
|
{
|
|
e[k*estep] = S[(Sstep + 1)*k];
|
|
if( k < n - 1 )
|
|
{
|
|
for( m = k+1, mv = std::abs(S[Sstep*k + m]), i = k+2; i < n; i++ )
|
|
{
|
|
Real v = std::abs(S[Sstep*k+i]);
|
|
if( mv < v )
|
|
mv = v, m = i;
|
|
}
|
|
maxSR[k] = mv;
|
|
indR[k] = m;
|
|
}
|
|
if( k > 0 )
|
|
{
|
|
for( m = 0, mv = std::abs(S[k]), i = 1; i < k; i++ )
|
|
{
|
|
Real v = std::abs(S[Sstep*i+k]);
|
|
if( mv < v )
|
|
mv = v, m = i;
|
|
}
|
|
maxSC[k] = mv;
|
|
indC[k] = m;
|
|
}
|
|
}
|
|
|
|
for( iters = 0; iters < maxIters; iters++ )
|
|
{
|
|
// find index (k,l) of pivot p
|
|
for( k = 0, mv = maxSR[0], i = 1; i < n-1; i++ )
|
|
{
|
|
Real v = maxSR[i];
|
|
if( mv < v )
|
|
mv = v, k = i;
|
|
}
|
|
int l = indR[k];
|
|
for( i = 1; i < n; i++ )
|
|
{
|
|
Real v = maxSC[i];
|
|
if( mv < v )
|
|
mv = v, k = indC[i], l = i;
|
|
}
|
|
|
|
Real p = S[Sstep*k + l];
|
|
if( std::abs(p) <= eps )
|
|
break;
|
|
Real y = Real((e[estep*l] - e[estep*k])*0.5);
|
|
Real t = std::abs(y) + hypot(p, y);
|
|
Real s = hypot(p, t);
|
|
Real c = t/s;
|
|
s = p/s; t = (p/t)*p;
|
|
if( y < 0 )
|
|
s = -s, t = -t;
|
|
S[Sstep*k + l] = 0;
|
|
|
|
e[estep*k] -= t;
|
|
e[estep*l] += t;
|
|
|
|
Real a0, b0;
|
|
|
|
#undef rotate
|
|
#define rotate(v0, v1) a0 = v0, b0 = v1, v0 = a0*c - b0*s, v1 = a0*s + b0*c
|
|
|
|
// rotate rows and columns k and l
|
|
for( i = 0; i < k; i++ )
|
|
rotate(S[Sstep*i+k], S[Sstep*i+l]);
|
|
for( i = k+1; i < l; i++ )
|
|
rotate(S[Sstep*k+i], S[Sstep*i+l]);
|
|
for( i = l+1; i < n; i++ )
|
|
rotate(S[Sstep*k+i], S[Sstep*l+i]);
|
|
|
|
// rotate eigenvectors
|
|
if( computeEvects )
|
|
for( i = 0; i < n; i++ )
|
|
rotate(E[Estep*k+i], E[Estep*l+i]);
|
|
|
|
#undef rotate
|
|
|
|
for( j = 0; j < 2; j++ )
|
|
{
|
|
int idx = j == 0 ? k : l;
|
|
if( idx < n - 1 )
|
|
{
|
|
for( m = idx+1, mv = std::abs(S[Sstep*idx + m]), i = idx+2; i < n; i++ )
|
|
{
|
|
Real v = std::abs(S[Sstep*idx+i]);
|
|
if( mv < v )
|
|
mv = v, m = i;
|
|
}
|
|
maxSR[idx] = mv;
|
|
indR[idx] = m;
|
|
}
|
|
if( idx > 0 )
|
|
{
|
|
for( m = 0, mv = std::abs(S[idx]), i = 1; i < idx; i++ )
|
|
{
|
|
Real v = std::abs(S[Sstep*i+idx]);
|
|
if( mv < v )
|
|
mv = v, m = i;
|
|
}
|
|
maxSC[idx] = mv;
|
|
indC[idx] = m;
|
|
}
|
|
}
|
|
}
|
|
|
|
// sort eigenvalues & eigenvectors
|
|
for( k = 0; k < n-1; k++ )
|
|
{
|
|
m = k;
|
|
for( i = k+1; i < n; i++ )
|
|
{
|
|
if( e[estep*m] < e[estep*i] )
|
|
m = i;
|
|
}
|
|
if( k != m )
|
|
{
|
|
std::swap(e[estep*m], e[estep*k]);
|
|
if( computeEvects )
|
|
for( i = 0; i < n; i++ )
|
|
std::swap(E[Estep*m + i], E[Estep*k + i]);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool eigen( const Mat& src, Mat& evals, Mat& evects, bool computeEvects,
|
|
int lowindex, int highindex )
|
|
{
|
|
int type = src.type();
|
|
integer n = src.rows;
|
|
|
|
// If a range is selected both limits are needed.
|
|
CV_Assert( ( lowindex >= 0 && highindex >= 0 ) ||
|
|
( lowindex < 0 && highindex < 0 ) );
|
|
|
|
// lapack sorts from lowest to highest so we flip
|
|
integer il = n - highindex;
|
|
integer iu = n - lowindex;
|
|
|
|
CV_Assert( src.rows == src.cols );
|
|
CV_Assert (type == CV_32F || type == CV_64F);
|
|
|
|
// allow for 1xn eigenvalue matrix too
|
|
if( !(evals.rows == 1 && evals.cols == n && evals.type() == type) )
|
|
evals.create(n, 1, type);
|
|
|
|
if( n <= 20 )
|
|
{
|
|
if( type == CV_32F )
|
|
return jacobi<float>(src, evals, evects, computeEvects, FLT_EPSILON);
|
|
else
|
|
return jacobi<double>(src, evals, evects, computeEvects, DBL_EPSILON);
|
|
}
|
|
|
|
bool result;
|
|
integer m=0, lda, ldv=n, lwork=-1, iwork1=0, liwork=-1, idummy=0, info=0;
|
|
integer *isupport, *iwork;
|
|
char job[] = { computeEvects ? 'V' : 'N', '\0' };
|
|
char range[2] = "I";
|
|
range[0] = (il < n + 1) ? 'I' : 'A';
|
|
|
|
char L[] = {'L', '\0'};
|
|
uchar* work;
|
|
|
|
AutoBuffer<uchar> buf;
|
|
|
|
int elem_size = (int)src.elemSize();
|
|
lda = (int)(src.step/elem_size);
|
|
|
|
if( computeEvects )
|
|
{
|
|
evects.create(n, n, type);
|
|
ldv = (int)(evects.step/elem_size);
|
|
}
|
|
|
|
bool copy_evals = !evals.isContinuous();
|
|
|
|
if( type == CV_32FC1 )
|
|
{
|
|
float work1 = 0, dummy = 0, abstol = 0, *s;
|
|
|
|
ssyevr_(job, range, L, &n, (float*)src.data, &lda, &dummy, &dummy, &il, &iu,
|
|
&abstol, &m, (float*)evals.data, (float*)evects.data, &ldv,
|
|
&idummy, &work1, &lwork, &iwork1, &liwork, &info );
|
|
assert( info == 0 );
|
|
|
|
lwork = cvRound(work1);
|
|
liwork = iwork1;
|
|
buf.allocate((lwork + n*n + (copy_evals ? n : 0))*elem_size +
|
|
(liwork+2*n+1)*sizeof(integer));
|
|
Mat a(n, n, type, (uchar*)buf);
|
|
src.copyTo(a);
|
|
lda = (integer)a.step1();
|
|
work = a.data + n*n*elem_size;
|
|
if( copy_evals )
|
|
s = (float*)(work + lwork*elem_size);
|
|
else
|
|
s = (float*)evals.data;
|
|
|
|
iwork = (integer*)cvAlignPtr(work + (lwork + (copy_evals ? n : 0))*elem_size, sizeof(integer));
|
|
isupport = iwork + liwork;
|
|
|
|
ssyevr_(job, range, L, &n, (float*)a.data, &lda, &dummy, &dummy,
|
|
&il, &iu, &abstol, &m, s, (float*)evects.data,
|
|
&ldv, isupport, (float*)work, &lwork, iwork, &liwork, &info );
|
|
result = info == 0;
|
|
}
|
|
else
|
|
{
|
|
double work1 = 0, dummy = 0, abstol = 0, *s;
|
|
|
|
dsyevr_(job, range, L, &n, (double*)src.data, &lda, &dummy, &dummy, &il, &iu,
|
|
&abstol, &m, (double*)evals.data, (double*)evects.data, &ldv,
|
|
&idummy, &work1, &lwork, &iwork1, &liwork, &info );
|
|
assert( info == 0 );
|
|
|
|
lwork = cvRound(work1);
|
|
liwork = iwork1;
|
|
buf.allocate((lwork + n*n + (copy_evals ? n : 0))*elem_size +
|
|
(liwork+2*n+1)*sizeof(integer));
|
|
Mat a(n, n, type, (uchar*)buf);
|
|
src.copyTo(a);
|
|
lda = (integer)a.step1();
|
|
work = a.data + n*n*elem_size;
|
|
|
|
if( copy_evals )
|
|
s = (double*)(work + lwork*elem_size);
|
|
else
|
|
s = (double*)evals.data;
|
|
|
|
iwork = (integer*)cvAlignPtr(work + (lwork + (copy_evals ? n : 0))*elem_size, sizeof(integer));
|
|
isupport = iwork + liwork;
|
|
|
|
dsyevr_(job, range, L, &n, (double*)a.data, &lda, &dummy, &dummy,
|
|
&il, &iu, &abstol, &m, s, (double*)evects.data,
|
|
&ldv, isupport, (double*)work, &lwork, iwork, &liwork, &info );
|
|
result = info == 0;
|
|
}
|
|
|
|
if( copy_evals )
|
|
Mat(evals.rows, evals.cols, type, work + lwork*elem_size).copyTo(evals);
|
|
|
|
if( il < n + 1 && n > 20 ) {
|
|
int nVV = iu - il + 1;
|
|
if( computeEvects ) {
|
|
Mat flipme = evects.rowRange(0, nVV);
|
|
flip(flipme, flipme, 0);
|
|
flipme = evals.rowRange(0, nVV);
|
|
flip(flipme, flipme, 0);
|
|
}
|
|
} else {
|
|
flip(evals, evals, evals.rows > 1 ? 0 : 1);
|
|
if( computeEvects )
|
|
flip(evects, evects, 0);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool eigen( const Mat& src, Mat& evals, int lowindex, int highindex )
|
|
{
|
|
Mat evects;
|
|
return eigen(src, evals, evects, false, lowindex, highindex);
|
|
}
|
|
|
|
bool eigen( const Mat& src, Mat& evals, Mat& evects, int lowindex,
|
|
int highindex )
|
|
{
|
|
return eigen(src, evals, evects, true, lowindex, highindex);
|
|
}
|
|
|
|
|
|
|
|
/* y[0:m,0:n] += diag(a[0:1,0:m]) * x[0:m,0:n] */
|
|
template<typename T1, typename T2, typename T3> static void
|
|
MatrAXPY( int m, int n, const T1* x, int dx,
|
|
const T2* a, int inca, T3* y, int dy )
|
|
{
|
|
int i, j;
|
|
for( i = 0; i < m; i++, x += dx, y += dy )
|
|
{
|
|
T2 s = a[i*inca];
|
|
for( j = 0; j <= n - 4; j += 4 )
|
|
{
|
|
T3 t0 = (T3)(y[j] + s*x[j]);
|
|
T3 t1 = (T3)(y[j+1] + s*x[j+1]);
|
|
y[j] = t0;
|
|
y[j+1] = t1;
|
|
t0 = (T3)(y[j+2] + s*x[j+2]);
|
|
t1 = (T3)(y[j+3] + s*x[j+3]);
|
|
y[j+2] = t0;
|
|
y[j+3] = t1;
|
|
}
|
|
|
|
for( ; j < n; j++ )
|
|
y[j] = (T3)(y[j] + s*x[j]);
|
|
}
|
|
}
|
|
|
|
template<typename T> static void
|
|
SVBkSb( int m, int n, const T* w, int incw,
|
|
const T* u, int ldu, int uT,
|
|
const T* v, int ldv, int vT,
|
|
const T* b, int ldb, int nb,
|
|
T* x, int ldx, double* buffer, T eps )
|
|
{
|
|
double threshold = 0;
|
|
int udelta0 = uT ? ldu : 1, udelta1 = uT ? 1 : ldu;
|
|
int vdelta0 = vT ? ldv : 1, vdelta1 = vT ? 1 : ldv;
|
|
int i, j, nm = std::min(m, n);
|
|
|
|
if( !b )
|
|
nb = m;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
for( j = 0; j < nb; j++ )
|
|
x[i*ldx + j] = 0;
|
|
|
|
for( i = 0; i < nm; i++ )
|
|
threshold += w[i*incw];
|
|
threshold *= eps;
|
|
|
|
// v * inv(w) * uT * b
|
|
for( i = 0; i < nm; i++, u += udelta0, v += vdelta0 )
|
|
{
|
|
double wi = w[i*incw];
|
|
if( wi <= threshold )
|
|
continue;
|
|
wi = 1/wi;
|
|
|
|
if( nb == 1 )
|
|
{
|
|
double s = 0;
|
|
if( b )
|
|
for( j = 0; j < m; j++ )
|
|
s += u[j*udelta1]*b[j*ldb];
|
|
else
|
|
s = u[0];
|
|
s *= wi;
|
|
|
|
for( j = 0; j < n; j++ )
|
|
x[j*ldx] = (T)(x[j*ldx] + s*v[j*vdelta1]);
|
|
}
|
|
else
|
|
{
|
|
if( b )
|
|
{
|
|
for( j = 0; j < nb; j++ )
|
|
buffer[j] = 0;
|
|
MatrAXPY( m, nb, b, ldb, u, udelta1, buffer, 0 );
|
|
for( j = 0; j < nb; j++ )
|
|
buffer[j] *= wi;
|
|
}
|
|
else
|
|
{
|
|
for( j = 0; j < nb; j++ )
|
|
buffer[j] = u[j*udelta1]*wi;
|
|
}
|
|
MatrAXPY( n, nb, buffer, 0, v, vdelta1, x, ldx );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void _SVDcompute( const Mat& a, Mat& w, Mat* u, Mat* vt, int flags )
|
|
{
|
|
integer m = a.rows, n = a.cols, mn = std::max(m, n), nm = std::min(m, n);
|
|
int type = a.type(), elem_size = (int)a.elemSize();
|
|
bool compute_uv = u && vt;
|
|
|
|
if( flags & SVD::NO_UV )
|
|
{
|
|
if(u) u->release();
|
|
if(vt) vt->release();
|
|
u = vt = 0;
|
|
compute_uv = false;
|
|
}
|
|
|
|
if( compute_uv )
|
|
{
|
|
u->create( (int)m, (int)((flags & SVD::FULL_UV) ? m : nm), type );
|
|
vt->create( (int)((flags & SVD::FULL_UV) ? n : nm), n, type );
|
|
}
|
|
|
|
w.create(nm, 1, type);
|
|
|
|
Mat _a = a;
|
|
int a_ofs = 0, work_ofs=0, iwork_ofs=0, buf_size = 0;
|
|
bool temp_a = false;
|
|
double u1=0, v1=0, work1=0;
|
|
float uf1=0, vf1=0, workf1=0;
|
|
integer lda, ldu, ldv, lwork=-1, iwork1=0, info=0;
|
|
char mode[] = {compute_uv ? 'S' : 'N', '\0'};
|
|
|
|
if( m != n && compute_uv && (flags & SVD::FULL_UV) )
|
|
mode[0] = 'A';
|
|
|
|
if( !(flags & SVD::MODIFY_A) )
|
|
{
|
|
if( mode[0] == 'N' || mode[0] == 'A' )
|
|
temp_a = true;
|
|
else if( compute_uv && (a.size() == vt->size() || a.size() == u->size()) && mode[0] == 'S' )
|
|
mode[0] = 'O';
|
|
}
|
|
|
|
lda = a.cols;
|
|
ldv = ldu = mn;
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
sgesdd_(mode, &n, &m, (float*)a.data, &lda, (float*)w.data,
|
|
&vf1, &ldv, &uf1, &ldu, &workf1, &lwork, &iwork1, &info );
|
|
lwork = cvRound(workf1);
|
|
}
|
|
else
|
|
{
|
|
dgesdd_(mode, &n, &m, (double*)a.data, &lda, (double*)w.data,
|
|
&v1, &ldv, &u1, &ldu, &work1, &lwork, &iwork1, &info );
|
|
lwork = cvRound(work1);
|
|
}
|
|
|
|
assert(info == 0);
|
|
if( temp_a )
|
|
{
|
|
a_ofs = buf_size;
|
|
buf_size += n*m*elem_size;
|
|
}
|
|
work_ofs = buf_size;
|
|
buf_size += lwork*elem_size;
|
|
buf_size = cvAlign(buf_size, sizeof(integer));
|
|
iwork_ofs = buf_size;
|
|
buf_size += 8*nm*sizeof(integer);
|
|
|
|
AutoBuffer<uchar> buf(buf_size);
|
|
uchar* buffer = (uchar*)buf;
|
|
|
|
if( temp_a )
|
|
{
|
|
_a = Mat(a.rows, a.cols, type, buffer );
|
|
a.copyTo(_a);
|
|
}
|
|
|
|
if( !(flags & SVD::MODIFY_A) && !temp_a )
|
|
{
|
|
if( compute_uv && a.size() == vt->size() )
|
|
{
|
|
a.copyTo(*vt);
|
|
_a = *vt;
|
|
}
|
|
else if( compute_uv && a.size() == u->size() )
|
|
{
|
|
a.copyTo(*u);
|
|
_a = *u;
|
|
}
|
|
}
|
|
|
|
if( compute_uv )
|
|
{
|
|
ldv = (int)(vt->step ? vt->step/elem_size : vt->cols);
|
|
ldu = (int)(u->step ? u->step/elem_size : u->cols);
|
|
}
|
|
|
|
lda = (int)(_a.step ? _a.step/elem_size : _a.cols);
|
|
if( type == CV_32F )
|
|
{
|
|
sgesdd_(mode, &n, &m, (float*)_a.data, &lda, (float*)w.data,
|
|
vt ? (float*)vt->data : (float*)&v1, &ldv, u ? (float*)u->data : (float*)&u1, &ldu,
|
|
(float*)(buffer + work_ofs), &lwork, (integer*)(buffer + iwork_ofs), &info );
|
|
}
|
|
else
|
|
{
|
|
dgesdd_(mode, &n, &m, (double*)_a.data, &lda, (double*)w.data,
|
|
vt ? (double*)vt->data : &v1, &ldv, u ? (double*)u->data : &u1, &ldu,
|
|
(double*)(buffer + work_ofs), &lwork, (integer*)(buffer + iwork_ofs), &info );
|
|
}
|
|
CV_Assert(info >= 0);
|
|
if(info != 0)
|
|
{
|
|
*u = Scalar(0.);
|
|
*vt = Scalar(0.);
|
|
w = Scalar(0.);
|
|
}
|
|
}
|
|
|
|
|
|
void SVD::compute( const Mat& a, Mat& w, Mat& u, Mat& vt, int flags )
|
|
{
|
|
_SVDcompute(a, w, &u, &vt, flags);
|
|
}
|
|
|
|
void SVD::compute( const Mat& a, Mat& w, int flags )
|
|
{
|
|
_SVDcompute(a, w, 0, 0, flags);
|
|
}
|
|
|
|
void SVD::backSubst( const Mat& w, const Mat& u, const Mat& vt, const Mat& rhs, Mat& dst )
|
|
{
|
|
int type = w.type(), esz = (int)w.elemSize();
|
|
int m = u.rows, n = vt.cols, nb = rhs.data ? rhs.cols : m;
|
|
AutoBuffer<double> buffer(nb);
|
|
CV_Assert( u.data && vt.data && w.data );
|
|
|
|
if( rhs.data )
|
|
CV_Assert( rhs.type() == type && rhs.rows == m );
|
|
|
|
dst.create( n, nb, type );
|
|
if( type == CV_32F )
|
|
SVBkSb(m, n, (float*)w.data, 1, (float*)u.data, (int)(u.step/esz), false,
|
|
(float*)vt.data, (int)(vt.step/esz), true, (float*)rhs.data, (int)(rhs.step/esz),
|
|
nb, (float*)dst.data, (int)(dst.step/esz), buffer, 10*FLT_EPSILON );
|
|
else if( type == CV_64F )
|
|
SVBkSb(m, n, (double*)w.data, 1, (double*)u.data, (int)(u.step/esz), false,
|
|
(double*)vt.data, (int)(vt.step/esz), true, (double*)rhs.data, (int)(rhs.step/esz),
|
|
nb, (double*)dst.data, (int)(dst.step/esz), buffer, 2*DBL_EPSILON );
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
}
|
|
|
|
|
|
SVD& SVD::operator ()(const Mat& a, int flags)
|
|
{
|
|
_SVDcompute(a, w, &u, &vt, flags);
|
|
return *this;
|
|
}
|
|
|
|
|
|
void SVD::backSubst( const Mat& rhs, Mat& dst ) const
|
|
{
|
|
backSubst( w, u, vt, rhs, dst );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
CV_IMPL double
|
|
cvDet( const CvArr* arr )
|
|
{
|
|
if( CV_IS_MAT(arr) && ((CvMat*)arr)->rows <= 3 )
|
|
{
|
|
CvMat* mat = (CvMat*)arr;
|
|
int type = CV_MAT_TYPE(mat->type);
|
|
int rows = mat->rows;
|
|
uchar* m = mat->data.ptr;
|
|
int step = mat->step;
|
|
CV_Assert( rows == mat->cols );
|
|
|
|
#define Mf(y, x) ((float*)(m + y*step))[x]
|
|
#define Md(y, x) ((double*)(m + y*step))[x]
|
|
|
|
if( type == CV_32F )
|
|
{
|
|
if( rows == 2 )
|
|
return det2(Mf);
|
|
if( rows == 3 )
|
|
return det3(Mf);
|
|
}
|
|
else if( type == CV_64F )
|
|
{
|
|
if( rows == 2 )
|
|
return det2(Md);
|
|
if( rows == 3 )
|
|
return det3(Md);
|
|
}
|
|
return cv::determinant(cv::Mat(mat));
|
|
}
|
|
return cv::determinant(cv::cvarrToMat(arr));
|
|
}
|
|
|
|
|
|
CV_IMPL double
|
|
cvInvert( const CvArr* srcarr, CvArr* dstarr, int method )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.type() == dst.type() && src.rows == dst.cols && src.cols == dst.rows );
|
|
return cv::invert( src, dst, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
|
|
method == CV_SVD || method == CV_SVD_SYM ? cv::DECOMP_SVD : cv::DECOMP_LU );
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method )
|
|
{
|
|
cv::Mat A = cv::cvarrToMat(Aarr), b = cv::cvarrToMat(barr), x = cv::cvarrToMat(xarr);
|
|
|
|
CV_Assert( A.type() == x.type() && A.cols == x.rows && x.cols == b.cols );
|
|
return cv::solve( A, b, x, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY :
|
|
method == CV_SVD || method == CV_SVD_SYM ? cv::DECOMP_SVD :
|
|
A.rows > A.cols ? cv::DECOMP_QR : cv::DECOMP_LU );
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
|
|
int lowindex, int highindex)
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), evals = cv::cvarrToMat(evalsarr);
|
|
if( evectsarr )
|
|
{
|
|
cv::Mat evects = cv::cvarrToMat(evectsarr);
|
|
eigen(src, evals, evects, lowindex, highindex);
|
|
}
|
|
else
|
|
eigen(src, evals, lowindex, highindex);
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvSVD( CvArr* aarr, CvArr* warr, CvArr* uarr, CvArr* varr, int flags )
|
|
{
|
|
cv::Mat a = cv::cvarrToMat(aarr), w = cv::cvarrToMat(warr), u, v;
|
|
int m = a.rows, n = a.cols, type = a.type(), mn = std::max(m, n), nm = std::min(m, n);
|
|
|
|
CV_Assert( w.type() == type &&
|
|
(w.size() == cv::Size(nm,1) || w.size() == cv::Size(1, nm) ||
|
|
w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m)) );
|
|
|
|
cv::SVD svd;
|
|
|
|
if( w.size() == cv::Size(nm, 1) )
|
|
svd.w = cv::Mat(nm, 1, type, w.data );
|
|
else if( w.isContinuous() )
|
|
svd.w = w;
|
|
|
|
if( uarr )
|
|
{
|
|
u = cv::cvarrToMat(uarr);
|
|
CV_Assert( u.type() == type );
|
|
svd.u = u;
|
|
}
|
|
|
|
if( varr )
|
|
{
|
|
v = cv::cvarrToMat(varr);
|
|
CV_Assert( v.type() == type );
|
|
svd.vt = v;
|
|
}
|
|
|
|
svd(a, ((flags & CV_SVD_MODIFY_A) ? cv::SVD::MODIFY_A : 0) |
|
|
((!svd.u.data && !svd.vt.data) ? cv::SVD::NO_UV : 0) |
|
|
((m != n && (svd.u.size() == cv::Size(mn, mn) ||
|
|
svd.vt.size() == cv::Size(mn, mn))) ? cv::SVD::FULL_UV : 0));
|
|
|
|
if( u.data )
|
|
{
|
|
if( flags & CV_SVD_U_T )
|
|
cv::transpose( svd.u, u );
|
|
else if( u.data != svd.u.data )
|
|
{
|
|
CV_Assert( u.size() == svd.u.size() );
|
|
svd.u.copyTo(u);
|
|
}
|
|
}
|
|
|
|
if( v.data )
|
|
{
|
|
if( !(flags & CV_SVD_V_T) )
|
|
cv::transpose( svd.vt, v );
|
|
else if( v.data != svd.vt.data )
|
|
{
|
|
CV_Assert( v.size() == svd.vt.size() );
|
|
svd.vt.copyTo(v);
|
|
}
|
|
}
|
|
|
|
if( w.data != svd.w.data )
|
|
{
|
|
if( w.size() == svd.w.size() )
|
|
svd.w.copyTo(w);
|
|
else
|
|
{
|
|
w = cv::Scalar(0);
|
|
cv::Mat wd = w.diag();
|
|
svd.w.copyTo(wd);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvSVBkSb( const CvArr* warr, const CvArr* uarr,
|
|
const CvArr* varr, const CvArr* rhsarr,
|
|
CvArr* dstarr, int flags )
|
|
{
|
|
cv::Mat w = cv::cvarrToMat(warr), u = cv::cvarrToMat(uarr),
|
|
v = cv::cvarrToMat(varr), rhs, dst = cv::cvarrToMat(dstarr);
|
|
int type = w.type();
|
|
bool uT = (flags & CV_SVD_U_T) != 0, vT = (flags & CV_SVD_V_T) != 0;
|
|
int m = !uT ? u.rows : u.cols;
|
|
int n = vT ? v.cols : v.rows;
|
|
int nm = std::min(n, m), nb;
|
|
int esz = (int)w.elemSize();
|
|
int incw = w.size() == cv::Size(nm, 1) ? 1 : (int)(w.step/esz) + (w.cols > 1 && w.rows > 1);
|
|
|
|
CV_Assert( type == u.type() && type == v.type() &&
|
|
type == dst.type() && dst.rows == n &&
|
|
(!uT ? u.cols : u.rows) >= nm && (vT ? v.rows : v.cols) >= nm &&
|
|
(w.size() == cv::Size(nm, 1) || w.size() == cv::Size(1, nm) ||
|
|
w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m)));
|
|
|
|
if( rhsarr )
|
|
{
|
|
rhs = cv::cvarrToMat(rhsarr);
|
|
nb = rhs.cols;
|
|
CV_Assert( type == rhs.type() );
|
|
}
|
|
else
|
|
nb = m;
|
|
|
|
CV_Assert( dst.cols == nb );
|
|
cv::AutoBuffer<double> buffer(nb);
|
|
|
|
if( type == CV_32F )
|
|
cv::SVBkSb(m, n, (float*)w.data, incw, (float*)u.data, (int)(u.step/esz), uT,
|
|
(float*)v.data, (int)(v.step/esz), vT, (float*)rhs.data, (int)(rhs.step/esz),
|
|
nb, (float*)dst.data, (int)(dst.step/esz), buffer, 2*FLT_EPSILON );
|
|
else
|
|
cv::SVBkSb(m, n, (double*)w.data, incw, (double*)u.data, (int)(u.step/esz), uT,
|
|
(double*)v.data, (int)(v.step/esz), vT, (double*)rhs.data, (int)(rhs.step/esz),
|
|
nb, (double*)dst.data, (int)(dst.step/esz), buffer, 2*DBL_EPSILON );
|
|
}
|