opencv/modules/core/perf/opencl/perf_arithm.cpp
2014-03-17 12:33:12 +04:00

1028 lines
30 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
///////////// Lut ////////////////////////
typedef Size_MatType LUTFixture;
OCL_PERF_TEST_P(LUTFixture, LUT,
::testing::Combine(OCL_TEST_SIZES,
OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), cn = CV_MAT_CN(type);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, CV_8UC(cn)), lut(1, 256, type);
int dstType = CV_MAKETYPE(lut.depth(), src.channels());
UMat dst(srcSize, dstType);
declare.in(src, lut, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::LUT(src, lut, dst);
SANITY_CHECK(dst);
}
///////////// Exp ////////////////////////
typedef Size_MatType ExpFixture;
OCL_PERF_TEST_P(ExpFixture, Exp, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
declare.in(src).out(dst);
randu(src, 5, 16);
OCL_TEST_CYCLE() cv::exp(src, dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
///////////// Log ////////////////////////
typedef Size_MatType LogFixture;
OCL_PERF_TEST_P(LogFixture, Log, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
randu(src, 1, 10000);
declare.in(src).out(dst);
OCL_TEST_CYCLE() cv::log(src, dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
///////////// Add ////////////////////////
typedef Size_MatType AddFixture;
OCL_PERF_TEST_P(AddFixture, Add,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size srcSize = GET_PARAM(0);
const int type = GET_PARAM(1);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::add(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// Subtract ////////////////////////
typedef Size_MatType SubtractFixture;
OCL_PERF_TEST_P(SubtractFixture, Subtract,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::subtract(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// Mul ////////////////////////
typedef Size_MatType MulFixture;
OCL_PERF_TEST_P(MulFixture, Multiply, ::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::multiply(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// Div ////////////////////////
typedef Size_MatType DivFixture;
OCL_PERF_TEST_P(DivFixture, Divide,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::divide(src1, src2, dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
///////////// Absdiff ////////////////////////
typedef Size_MatType AbsDiffFixture;
OCL_PERF_TEST_P(AbsDiffFixture, Absdiff,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).in(dst);
OCL_TEST_CYCLE() cv::absdiff(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// CartToPolar ////////////////////////
typedef Size_MatType CartToPolarFixture;
OCL_PERF_TEST_P(CartToPolarFixture, CartToPolar, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type),
dst1(srcSize, type), dst2(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst1, dst2);
OCL_TEST_CYCLE() cv::cartToPolar(src1, src2, dst1, dst2);
SANITY_CHECK(dst1, 8e-3);
SANITY_CHECK(dst2, 8e-3);
}
///////////// PolarToCart ////////////////////////
typedef Size_MatType PolarToCartFixture;
OCL_PERF_TEST_P(PolarToCartFixture, PolarToCart, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type),
dst1(srcSize, type), dst2(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst1, dst2);
OCL_TEST_CYCLE() cv::polarToCart(src1, src2, dst1, dst2);
SANITY_CHECK(dst1, 5e-5);
SANITY_CHECK(dst2, 5e-5);
}
///////////// Magnitude ////////////////////////
typedef Size_MatType MagnitudeFixture;
OCL_PERF_TEST_P(MagnitudeFixture, Magnitude, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type),
dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::magnitude(src1, src2, dst);
SANITY_CHECK(dst, 1e-6);
}
///////////// Transpose ////////////////////////
typedef Size_MatType TransposeFixture;
OCL_PERF_TEST_P(TransposeFixture, Transpose, ::testing::Combine(
OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::transpose(src, dst);
SANITY_CHECK(dst);
}
///////////// Flip ////////////////////////
enum
{
FLIP_BOTH = 0, FLIP_ROWS, FLIP_COLS
};
CV_ENUM(FlipType, FLIP_BOTH, FLIP_ROWS, FLIP_COLS)
typedef std::tr1::tuple<Size, MatType, FlipType> FlipParams;
typedef TestBaseWithParam<FlipParams> FlipFixture;
OCL_PERF_TEST_P(FlipFixture, Flip,
::testing::Combine(OCL_TEST_SIZES,
OCL_TEST_TYPES, FlipType::all()))
{
const FlipParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const int flipType = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::flip(src, dst, flipType - 1);
SANITY_CHECK(dst);
}
///////////// minMaxLoc ////////////////////////
typedef Size_MatType MinMaxLocFixture;
OCL_PERF_TEST_P(MinMaxLocFixture, MinMaxLoc,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
bool onecn = CV_MAT_CN(type) == 1;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type);;
declare.in(src, WARMUP_RNG);
double min_val = 0.0, max_val = 0.0;
Point min_loc, max_loc;
OCL_TEST_CYCLE() cv::minMaxLoc(src, &min_val, &max_val, onecn ? &min_loc : NULL,
onecn ? &max_loc : NULL);
ASSERT_GE(max_val, min_val);
SANITY_CHECK(min_val);
SANITY_CHECK(max_val);
int min_loc_x = min_loc.x, min_loc_y = min_loc.y, max_loc_x = max_loc.x,
max_loc_y = max_loc.y;
SANITY_CHECK(min_loc_x);
SANITY_CHECK(min_loc_y);
SANITY_CHECK(max_loc_x);
SANITY_CHECK(max_loc_y);
}
///////////// Sum ////////////////////////
typedef Size_MatType SumFixture;
OCL_PERF_TEST_P(SumFixture, Sum,
::testing::Combine(OCL_TEST_SIZES,
OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), depth = CV_MAT_DEPTH(type);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type);
Scalar result;
randu(src, 0, 60);
declare.in(src);
OCL_TEST_CYCLE() result = cv::sum(src);
if (depth >= CV_32F)
SANITY_CHECK(result, 1e-6, ERROR_RELATIVE);
else
SANITY_CHECK(result);
}
///////////// countNonZero ////////////////////////
typedef Size_MatType CountNonZeroFixture;
OCL_PERF_TEST_P(CountNonZeroFixture, CountNonZero,
::testing::Combine(OCL_TEST_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type);
int result = 0;
randu(src, 0, 10);
declare.in(src);
OCL_TEST_CYCLE() result = cv::countNonZero(src);
SANITY_CHECK(result);
}
///////////// Phase ////////////////////////
typedef Size_MatType PhaseFixture;
OCL_PERF_TEST_P(PhaseFixture, Phase, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type),
dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::phase(src1, src2, dst, 1);
SANITY_CHECK(dst, 1e-2);
}
///////////// bitwise_and ////////////////////////
typedef Size_MatType BitwiseAndFixture;
OCL_PERF_TEST_P(BitwiseAndFixture, Bitwise_and,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::bitwise_and(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// bitwise_xor ////////////////////////
typedef Size_MatType BitwiseXorFixture;
OCL_PERF_TEST_P(BitwiseXorFixture, Bitwise_xor,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::bitwise_xor(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// bitwise_or ////////////////////////
typedef Size_MatType BitwiseOrFixture;
OCL_PERF_TEST_P(BitwiseOrFixture, Bitwise_or,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::bitwise_or(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// bitwise_not ////////////////////////
typedef Size_MatType BitwiseNotFixture;
OCL_PERF_TEST_P(BitwiseNotFixture, Bitwise_not,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::bitwise_not(src, dst);
SANITY_CHECK(dst);
}
///////////// compare ////////////////////////
CV_ENUM(CmpCode, CMP_LT, CMP_LE, CMP_EQ, CMP_NE, CMP_GE, CMP_GT)
typedef std::tr1::tuple<Size, MatType, CmpCode> CompareParams;
typedef TestBaseWithParam<CompareParams> CompareFixture;
OCL_PERF_TEST_P(CompareFixture, Compare,
::testing::Combine(OCL_TEST_SIZES,
OCL_TEST_TYPES_134, CmpCode::all()))
{
const CompareParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const int cmpCode = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, CV_8UC(CV_MAT_CN(type)));
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::compare(src1, src2, dst, cmpCode);
SANITY_CHECK(dst);
}
OCL_PERF_TEST_P(CompareFixture, CompareScalar,
::testing::Combine(OCL_TEST_SIZES,
OCL_PERF_ENUM((MatType)CV_32FC1), // TODO: OCL_TEST_TYPES_134
CmpCode::all()))
{
const CompareParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const int cmpCode = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), dst(srcSize, CV_8UC(CV_MAT_CN(type)));
declare.in(src1, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::compare(src1, 32, dst, cmpCode);
SANITY_CHECK(dst);
}
///////////// pow ////////////////////////
typedef Size_MatType PowFixture;
OCL_PERF_TEST_P(PowFixture, Pow, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
randu(src, -100, 100);
declare.in(src).out(dst);
OCL_TEST_CYCLE() cv::pow(src, -2.0, dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
///////////// AddWeighted////////////////////////
typedef Size_MatType AddWeightedFixture;
OCL_PERF_TEST_P(AddWeightedFixture, AddWeighted,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), depth = CV_MAT_DEPTH(type);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
double alpha = 2.0, beta = 1.0, gama = 3.0;
OCL_TEST_CYCLE() cv::addWeighted(src1, alpha, src2, beta, gama, dst);
if (depth >= CV_32F)
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
else
SANITY_CHECK(dst);
}
///////////// Sqrt ///////////////////////
typedef Size_MatType SqrtFixture;
OCL_PERF_TEST_P(SqrtFixture, Sqrt, ::testing::Combine(
OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
randu(src, 0, 1000);
declare.in(src).out(dst);
OCL_TEST_CYCLE() cv::sqrt(src, dst);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
///////////// SetIdentity ////////////////////////
typedef Size_MatType SetIdentityFixture;
OCL_PERF_TEST_P(SetIdentityFixture, SetIdentity,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat dst(srcSize, type);
declare.out(dst);
OCL_TEST_CYCLE() cv::setIdentity(dst, cv::Scalar::all(181));
SANITY_CHECK(dst);
}
///////////// MeanStdDev ////////////////////////
typedef Size_MatType MeanStdDevFixture;
OCL_PERF_TEST_P(MeanStdDevFixture, MeanStdDev,
::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3),
OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const double eps = 2e-5;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type);
Scalar mean, stddev;
declare.in(src, WARMUP_RNG);
OCL_TEST_CYCLE() cv::meanStdDev(src, mean, stddev);
double mean0 = mean[0], mean1 = mean[1], mean2 = mean[2], mean3 = mean[3];
double stddev0 = stddev[0], stddev1 = stddev[1], stddev2 = stddev[2], stddev3 = stddev[3];
SANITY_CHECK(mean0, eps, ERROR_RELATIVE);
SANITY_CHECK(mean1, eps, ERROR_RELATIVE);
SANITY_CHECK(mean2, eps, ERROR_RELATIVE);
SANITY_CHECK(mean3, eps, ERROR_RELATIVE);
SANITY_CHECK(stddev0, eps, ERROR_RELATIVE);
SANITY_CHECK(stddev1, eps, ERROR_RELATIVE);
SANITY_CHECK(stddev2, eps, ERROR_RELATIVE);
SANITY_CHECK(stddev3, eps, ERROR_RELATIVE);
}
///////////// Norm ////////////////////////
CV_ENUM(NormType, NORM_INF, NORM_L1, NORM_L2)
typedef std::tr1::tuple<Size, MatType, NormType> NormParams;
typedef TestBaseWithParam<NormParams> NormFixture;
OCL_PERF_TEST_P(NormFixture, Norm,
::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3),
OCL_TEST_TYPES_134, NormType::all()))
{
const NormParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const int normType = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type);
double res;
declare.in(src1, src2, WARMUP_RNG);
OCL_TEST_CYCLE() res = cv::norm(src1, src2, normType);
SANITY_CHECK(res, 1e-5, ERROR_RELATIVE);
}
///////////// UMat::dot ////////////////////////
typedef Size_MatType UMatDotFixture;
OCL_PERF_TEST_P(UMatDotFixture, UMatDot,
::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3),
OCL_TEST_TYPES_134))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
double r = 0.0;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type);
declare.in(src1, src2, WARMUP_RNG);
OCL_TEST_CYCLE() r = src1.dot(src2);
SANITY_CHECK(r, 1e-5, ERROR_RELATIVE);
}
///////////// Repeat ////////////////////////
typedef Size_MatType RepeatFixture;
OCL_PERF_TEST_P(RepeatFixture, Repeat,
::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3), OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), nx = 2, ny = 2;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(Size(srcSize.width * nx, srcSize.height * ny), type);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::repeat(src, nx, ny, dst);
SANITY_CHECK(dst);
}
///////////// Min ////////////////////////
typedef Size_MatType MinFixture;
OCL_PERF_TEST_P(MinFixture, Min,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::min(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// Max ////////////////////////
typedef Size_MatType MaxFixture;
OCL_PERF_TEST_P(MaxFixture, Max,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::max(src1, src2, dst);
SANITY_CHECK(dst);
}
///////////// InRange ////////////////////////
typedef Size_MatType InRangeFixture;
OCL_PERF_TEST_P(InRangeFixture, InRange,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), lb(srcSize, type), ub(srcSize, type), dst(srcSize, CV_8UC1);
declare.in(src, lb, ub, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::inRange(src, lb, ub, dst);
SANITY_CHECK(dst);
}
///////////// Normalize ////////////////////////
CV_ENUM(NormalizeModes, CV_MINMAX, CV_L2, CV_L1, CV_C)
typedef tuple<Size, MatType, NormalizeModes> NormalizeParams;
typedef TestBaseWithParam<NormalizeParams> NormalizeFixture;
OCL_PERF_TEST_P(NormalizeFixture, Normalize,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES_134,
NormalizeModes::all()))
{
const NormalizeParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), mode = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::normalize(src, dst, 10, 110, mode);
SANITY_CHECK(dst, 5e-2);
}
///////////// ConvertScaleAbs ////////////////////////
typedef Size_MatType ConvertScaleAbsFixture;
OCL_PERF_TEST_P(ConvertScaleAbsFixture, ConvertScaleAbs,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), cn = CV_MAT_CN(type);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, CV_8UC(cn));
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::convertScaleAbs(src, dst, 0.5, 2);
SANITY_CHECK(dst);
}
///////////// PatchNaNs ////////////////////////
typedef Size_MatType PatchNaNsFixture;
OCL_PERF_TEST_P(PatchNaNsFixture, PatchNaNs,
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
Size srcSize = get<0>(params);
const int type = get<1>(params), cn = CV_MAT_CN(type);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type);
declare.in(src, WARMUP_RNG).out(src);
// generating NaNs
{
Mat src_ = src.getMat(ACCESS_RW);
srcSize.width *= cn;
for (int y = 0; y < srcSize.height; ++y)
{
float * const ptr = src_.ptr<float>(y);
for (int x = 0; x < srcSize.width; ++x)
ptr[x] = (x + y) % 2 == 0 ? std::numeric_limits<float>::quiet_NaN() : ptr[x];
}
}
OCL_TEST_CYCLE() cv::patchNaNs(src, 17.7);
SANITY_CHECK(src);
}
///////////// ScaleAdd ////////////////////////
typedef Size_MatType ScaleAddFixture;
OCL_PERF_TEST_P(ScaleAddFixture, ScaleAdd,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type);
declare.in(src1, src2, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::scaleAdd(src1, 0.6, src2, dst);
SANITY_CHECK(dst, 1e-6);
}
///////////// PSNR ////////////////////////
typedef Size_MatType PSNRFixture;
OCL_PERF_TEST_P(PSNRFixture, PSNR,
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
double psnr = 0;
UMat src1(srcSize, type), src2(srcSize, type);
declare.in(src1, src2, WARMUP_RNG);
OCL_TEST_CYCLE() psnr = cv::PSNR(src1, src2);
SANITY_CHECK(psnr, 1e-4, ERROR_RELATIVE);
}
///////////// Reduce ////////////////////////
CV_ENUM(ReduceMinMaxOp, CV_REDUCE_MIN, CV_REDUCE_MAX)
typedef tuple<Size, std::pair<MatType, MatType>, int, ReduceMinMaxOp> ReduceMinMaxParams;
typedef TestBaseWithParam<ReduceMinMaxParams> ReduceMinMaxFixture;
OCL_PERF_TEST_P(ReduceMinMaxFixture, Reduce,
::testing::Combine(OCL_TEST_SIZES,
OCL_PERF_ENUM(std::make_pair<MatType, MatType>(CV_8UC1, CV_8UC1),
std::make_pair<MatType, MatType>(CV_32FC4, CV_32FC4)),
OCL_PERF_ENUM(0, 1),
ReduceMinMaxOp::all()))
{
const ReduceMinMaxParams params = GetParam();
const std::pair<MatType, MatType> types = get<1>(params);
const int stype = types.first, dtype = types.second,
dim = get<2>(params), op = get<3>(params);
const Size srcSize = get<0>(params),
dstSize(dim == 0 ? srcSize.width : 1, dim == 0 ? 1 : srcSize.height);
const double eps = CV_MAT_DEPTH(dtype) <= CV_32S ? 1 : 1e-5;
checkDeviceMaxMemoryAllocSize(srcSize, stype);
checkDeviceMaxMemoryAllocSize(srcSize, dtype);
UMat src(srcSize, stype), dst(dstSize, dtype);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::reduce(src, dst, dim, op, dtype);
SANITY_CHECK(dst, eps);
}
CV_ENUM(ReduceAccOp, CV_REDUCE_SUM, CV_REDUCE_AVG)
typedef tuple<Size, std::pair<MatType, MatType>, int, ReduceAccOp> ReduceAccParams;
typedef TestBaseWithParam<ReduceAccParams> ReduceAccFixture;
OCL_PERF_TEST_P(ReduceAccFixture, Reduce,
::testing::Combine(OCL_TEST_SIZES,
OCL_PERF_ENUM(std::make_pair<MatType, MatType>(CV_8UC4, CV_32SC4),
std::make_pair<MatType, MatType>(CV_32FC1, CV_32FC1)),
OCL_PERF_ENUM(0, 1),
ReduceAccOp::all()))
{
const ReduceAccParams params = GetParam();
const std::pair<MatType, MatType> types = get<1>(params);
const int stype = types.first, dtype = types.second,
dim = get<2>(params), op = get<3>(params);
const Size srcSize = get<0>(params),
dstSize(dim == 0 ? srcSize.width : 1, dim == 0 ? 1 : srcSize.height);
const double eps = CV_MAT_DEPTH(dtype) <= CV_32S ? 1 : 3e-4;
checkDeviceMaxMemoryAllocSize(srcSize, stype);
checkDeviceMaxMemoryAllocSize(srcSize, dtype);
UMat src(srcSize, stype), dst(dstSize, dtype);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::reduce(src, dst, dim, op, dtype);
SANITY_CHECK(dst, eps);
}
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL