2014-11-06 08:36:24 +00:00

1322 lines
56 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_IMGPROC_HPP__
#define __OPENCV_IMGPROC_HPP__
#include "opencv2/core.hpp"
/*! \namespace cv
Namespace where all the C++ OpenCV functionality resides
*/
namespace cv
{
//! type of morphological operation
enum { MORPH_ERODE = 0,
MORPH_DILATE = 1,
MORPH_OPEN = 2,
MORPH_CLOSE = 3,
MORPH_GRADIENT = 4,
MORPH_TOPHAT = 5,
MORPH_BLACKHAT = 6
};
//! shape of the structuring element
enum { MORPH_RECT = 0,
MORPH_CROSS = 1,
MORPH_ELLIPSE = 2
};
//! interpolation algorithm
enum { INTER_NEAREST = 0, //!< nearest neighbor interpolation
INTER_LINEAR = 1, //!< bilinear interpolation
INTER_CUBIC = 2, //!< bicubic interpolation
INTER_AREA = 3, //!< area-based (or super) interpolation
INTER_LANCZOS4 = 4, //!< Lanczos interpolation over 8x8 neighborhood
INTER_MAX = 7, //!< mask for interpolation codes
WARP_FILL_OUTLIERS = 8,
WARP_INVERSE_MAP = 16
};
enum { INTER_BITS = 5,
INTER_BITS2 = INTER_BITS * 2,
INTER_TAB_SIZE = 1 << INTER_BITS,
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
};
//! Distance types for Distance Transform and M-estimators
enum { DIST_USER = -1, // User defined distance
DIST_L1 = 1, // distance = |x1-x2| + |y1-y2|
DIST_L2 = 2, // the simple euclidean distance
DIST_C = 3, // distance = max(|x1-x2|,|y1-y2|)
DIST_L12 = 4, // L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
DIST_FAIR = 5, // distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
DIST_WELSCH = 6, // distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
DIST_HUBER = 7 // distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
};
//! Mask size for distance transform
enum { DIST_MASK_3 = 3,
DIST_MASK_5 = 5,
DIST_MASK_PRECISE = 0
};
//! type of the threshold operation
enum { THRESH_BINARY = 0, // value = value > threshold ? max_value : 0
THRESH_BINARY_INV = 1, // value = value > threshold ? 0 : max_value
THRESH_TRUNC = 2, // value = value > threshold ? threshold : value
THRESH_TOZERO = 3, // value = value > threshold ? value : 0
THRESH_TOZERO_INV = 4, // value = value > threshold ? 0 : value
THRESH_MASK = 7,
THRESH_OTSU = 8, // use Otsu algorithm to choose the optimal threshold value
THRESH_TRIANGLE = 16 // use Triangle algorithm to choose the optimal threshold value
};
//! adaptive threshold algorithm
enum { ADAPTIVE_THRESH_MEAN_C = 0,
ADAPTIVE_THRESH_GAUSSIAN_C = 1
};
enum { PROJ_SPHERICAL_ORTHO = 0,
PROJ_SPHERICAL_EQRECT = 1
};
//! class of the pixel in GrabCut algorithm
enum { GC_BGD = 0, //!< background
GC_FGD = 1, //!< foreground
GC_PR_BGD = 2, //!< most probably background
GC_PR_FGD = 3 //!< most probably foreground
};
//! GrabCut algorithm flags
enum { GC_INIT_WITH_RECT = 0,
GC_INIT_WITH_MASK = 1,
GC_EVAL = 2
};
//! distanceTransform algorithm flags
enum { DIST_LABEL_CCOMP = 0,
DIST_LABEL_PIXEL = 1
};
//! floodfill algorithm flags
enum { FLOODFILL_FIXED_RANGE = 1 << 16,
FLOODFILL_MASK_ONLY = 1 << 17
};
//! type of the template matching operation
enum { TM_SQDIFF = 0,
TM_SQDIFF_NORMED = 1,
TM_CCORR = 2,
TM_CCORR_NORMED = 3,
TM_CCOEFF = 4,
TM_CCOEFF_NORMED = 5
};
//! connected components algorithm output formats
enum { CC_STAT_LEFT = 0,
CC_STAT_TOP = 1,
CC_STAT_WIDTH = 2,
CC_STAT_HEIGHT = 3,
CC_STAT_AREA = 4,
CC_STAT_MAX = 5
};
//! mode of the contour retrieval algorithm
enum { RETR_EXTERNAL = 0, //!< retrieve only the most external (top-level) contours
RETR_LIST = 1, //!< retrieve all the contours without any hierarchical information
RETR_CCOMP = 2, //!< retrieve the connected components (that can possibly be nested)
RETR_TREE = 3, //!< retrieve all the contours and the whole hierarchy
RETR_FLOODFILL = 4
};
//! the contour approximation algorithm
enum { CHAIN_APPROX_NONE = 1,
CHAIN_APPROX_SIMPLE = 2,
CHAIN_APPROX_TC89_L1 = 3,
CHAIN_APPROX_TC89_KCOS = 4
};
//! Variants of a Hough transform
enum { HOUGH_STANDARD = 0,
HOUGH_PROBABILISTIC = 1,
HOUGH_MULTI_SCALE = 2,
HOUGH_GRADIENT = 3
};
//! Variants of Line Segment Detector
enum { LSD_REFINE_NONE = 0,
LSD_REFINE_STD = 1,
LSD_REFINE_ADV = 2
};
//! Histogram comparison methods
enum { HISTCMP_CORREL = 0,
HISTCMP_CHISQR = 1,
HISTCMP_INTERSECT = 2,
HISTCMP_BHATTACHARYYA = 3,
HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA,
HISTCMP_CHISQR_ALT = 4,
HISTCMP_KL_DIV = 5
};
//! the color conversion code
enum { COLOR_BGR2BGRA = 0,
COLOR_RGB2RGBA = COLOR_BGR2BGRA,
COLOR_BGRA2BGR = 1,
COLOR_RGBA2RGB = COLOR_BGRA2BGR,
COLOR_BGR2RGBA = 2,
COLOR_RGB2BGRA = COLOR_BGR2RGBA,
COLOR_RGBA2BGR = 3,
COLOR_BGRA2RGB = COLOR_RGBA2BGR,
COLOR_BGR2RGB = 4,
COLOR_RGB2BGR = COLOR_BGR2RGB,
COLOR_BGRA2RGBA = 5,
COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
COLOR_BGR2GRAY = 6,
COLOR_RGB2GRAY = 7,
COLOR_GRAY2BGR = 8,
COLOR_GRAY2RGB = COLOR_GRAY2BGR,
COLOR_GRAY2BGRA = 9,
COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
COLOR_BGRA2GRAY = 10,
COLOR_RGBA2GRAY = 11,
COLOR_BGR2BGR565 = 12,
COLOR_RGB2BGR565 = 13,
COLOR_BGR5652BGR = 14,
COLOR_BGR5652RGB = 15,
COLOR_BGRA2BGR565 = 16,
COLOR_RGBA2BGR565 = 17,
COLOR_BGR5652BGRA = 18,
COLOR_BGR5652RGBA = 19,
COLOR_GRAY2BGR565 = 20,
COLOR_BGR5652GRAY = 21,
COLOR_BGR2BGR555 = 22,
COLOR_RGB2BGR555 = 23,
COLOR_BGR5552BGR = 24,
COLOR_BGR5552RGB = 25,
COLOR_BGRA2BGR555 = 26,
COLOR_RGBA2BGR555 = 27,
COLOR_BGR5552BGRA = 28,
COLOR_BGR5552RGBA = 29,
COLOR_GRAY2BGR555 = 30,
COLOR_BGR5552GRAY = 31,
COLOR_BGR2XYZ = 32,
COLOR_RGB2XYZ = 33,
COLOR_XYZ2BGR = 34,
COLOR_XYZ2RGB = 35,
COLOR_BGR2YCrCb = 36,
COLOR_RGB2YCrCb = 37,
COLOR_YCrCb2BGR = 38,
COLOR_YCrCb2RGB = 39,
COLOR_BGR2HSV = 40,
COLOR_RGB2HSV = 41,
COLOR_BGR2Lab = 44,
COLOR_RGB2Lab = 45,
COLOR_BGR2Luv = 50,
COLOR_RGB2Luv = 51,
COLOR_BGR2HLS = 52,
COLOR_RGB2HLS = 53,
COLOR_HSV2BGR = 54,
COLOR_HSV2RGB = 55,
COLOR_Lab2BGR = 56,
COLOR_Lab2RGB = 57,
COLOR_Luv2BGR = 58,
COLOR_Luv2RGB = 59,
COLOR_HLS2BGR = 60,
COLOR_HLS2RGB = 61,
COLOR_BGR2HSV_FULL = 66,
COLOR_RGB2HSV_FULL = 67,
COLOR_BGR2HLS_FULL = 68,
COLOR_RGB2HLS_FULL = 69,
COLOR_HSV2BGR_FULL = 70,
COLOR_HSV2RGB_FULL = 71,
COLOR_HLS2BGR_FULL = 72,
COLOR_HLS2RGB_FULL = 73,
COLOR_LBGR2Lab = 74,
COLOR_LRGB2Lab = 75,
COLOR_LBGR2Luv = 76,
COLOR_LRGB2Luv = 77,
COLOR_Lab2LBGR = 78,
COLOR_Lab2LRGB = 79,
COLOR_Luv2LBGR = 80,
COLOR_Luv2LRGB = 81,
COLOR_BGR2YUV = 82,
COLOR_RGB2YUV = 83,
COLOR_YUV2BGR = 84,
COLOR_YUV2RGB = 85,
// YUV 4:2:0 family to RGB
COLOR_YUV2RGB_NV12 = 90,
COLOR_YUV2BGR_NV12 = 91,
COLOR_YUV2RGB_NV21 = 92,
COLOR_YUV2BGR_NV21 = 93,
COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
COLOR_YUV2RGBA_NV12 = 94,
COLOR_YUV2BGRA_NV12 = 95,
COLOR_YUV2RGBA_NV21 = 96,
COLOR_YUV2BGRA_NV21 = 97,
COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
COLOR_YUV2RGB_YV12 = 98,
COLOR_YUV2BGR_YV12 = 99,
COLOR_YUV2RGB_IYUV = 100,
COLOR_YUV2BGR_IYUV = 101,
COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
COLOR_YUV2RGBA_YV12 = 102,
COLOR_YUV2BGRA_YV12 = 103,
COLOR_YUV2RGBA_IYUV = 104,
COLOR_YUV2BGRA_IYUV = 105,
COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
COLOR_YUV2GRAY_420 = 106,
COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
// YUV 4:2:2 family to RGB
COLOR_YUV2RGB_UYVY = 107,
COLOR_YUV2BGR_UYVY = 108,
//COLOR_YUV2RGB_VYUY = 109,
//COLOR_YUV2BGR_VYUY = 110,
COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
COLOR_YUV2RGBA_UYVY = 111,
COLOR_YUV2BGRA_UYVY = 112,
//COLOR_YUV2RGBA_VYUY = 113,
//COLOR_YUV2BGRA_VYUY = 114,
COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
COLOR_YUV2RGB_YUY2 = 115,
COLOR_YUV2BGR_YUY2 = 116,
COLOR_YUV2RGB_YVYU = 117,
COLOR_YUV2BGR_YVYU = 118,
COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
COLOR_YUV2RGBA_YUY2 = 119,
COLOR_YUV2BGRA_YUY2 = 120,
COLOR_YUV2RGBA_YVYU = 121,
COLOR_YUV2BGRA_YVYU = 122,
COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
COLOR_YUV2GRAY_UYVY = 123,
COLOR_YUV2GRAY_YUY2 = 124,
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
// alpha premultiplication
COLOR_RGBA2mRGBA = 125,
COLOR_mRGBA2RGBA = 126,
// RGB to YUV 4:2:0 family
COLOR_RGB2YUV_I420 = 127,
COLOR_BGR2YUV_I420 = 128,
COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
COLOR_RGBA2YUV_I420 = 129,
COLOR_BGRA2YUV_I420 = 130,
COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
COLOR_RGB2YUV_YV12 = 131,
COLOR_BGR2YUV_YV12 = 132,
COLOR_RGBA2YUV_YV12 = 133,
COLOR_BGRA2YUV_YV12 = 134,
// Demosaicing
COLOR_BayerBG2BGR = 46,
COLOR_BayerGB2BGR = 47,
COLOR_BayerRG2BGR = 48,
COLOR_BayerGR2BGR = 49,
COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
COLOR_BayerBG2GRAY = 86,
COLOR_BayerGB2GRAY = 87,
COLOR_BayerRG2GRAY = 88,
COLOR_BayerGR2GRAY = 89,
// Demosaicing using Variable Number of Gradients
COLOR_BayerBG2BGR_VNG = 62,
COLOR_BayerGB2BGR_VNG = 63,
COLOR_BayerRG2BGR_VNG = 64,
COLOR_BayerGR2BGR_VNG = 65,
COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
// Edge-Aware Demosaicing
COLOR_BayerBG2BGR_EA = 135,
COLOR_BayerGB2BGR_EA = 136,
COLOR_BayerRG2BGR_EA = 137,
COLOR_BayerGR2BGR_EA = 138,
COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
COLOR_COLORCVT_MAX = 139
};
//! types of intersection between rectangles
enum { INTERSECT_NONE = 0,
INTERSECT_PARTIAL = 1,
INTERSECT_FULL = 2
};
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
class CV_EXPORTS GeneralizedHough : public Algorithm
{
public:
//! set template to search
virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
//! find template on image
virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
//! Canny low threshold.
virtual void setCannyLowThresh(int cannyLowThresh) = 0;
virtual int getCannyLowThresh() const = 0;
//! Canny high threshold.
virtual void setCannyHighThresh(int cannyHighThresh) = 0;
virtual int getCannyHighThresh() const = 0;
//! Minimum distance between the centers of the detected objects.
virtual void setMinDist(double minDist) = 0;
virtual double getMinDist() const = 0;
//! Inverse ratio of the accumulator resolution to the image resolution.
virtual void setDp(double dp) = 0;
virtual double getDp() const = 0;
//! Maximal size of inner buffers.
virtual void setMaxBufferSize(int maxBufferSize) = 0;
virtual int getMaxBufferSize() const = 0;
};
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation
class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough
{
public:
//! R-Table levels.
virtual void setLevels(int levels) = 0;
virtual int getLevels() const = 0;
//! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
virtual void setVotesThreshold(int votesThreshold) = 0;
virtual int getVotesThreshold() const = 0;
};
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
//! Detects position, traslation and rotation
class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough
{
public:
//! Angle difference in degrees between two points in feature.
virtual void setXi(double xi) = 0;
virtual double getXi() const = 0;
//! Feature table levels.
virtual void setLevels(int levels) = 0;
virtual int getLevels() const = 0;
//! Maximal difference between angles that treated as equal.
virtual void setAngleEpsilon(double angleEpsilon) = 0;
virtual double getAngleEpsilon() const = 0;
//! Minimal rotation angle to detect in degrees.
virtual void setMinAngle(double minAngle) = 0;
virtual double getMinAngle() const = 0;
//! Maximal rotation angle to detect in degrees.
virtual void setMaxAngle(double maxAngle) = 0;
virtual double getMaxAngle() const = 0;
//! Angle step in degrees.
virtual void setAngleStep(double angleStep) = 0;
virtual double getAngleStep() const = 0;
//! Angle votes threshold.
virtual void setAngleThresh(int angleThresh) = 0;
virtual int getAngleThresh() const = 0;
//! Minimal scale to detect.
virtual void setMinScale(double minScale) = 0;
virtual double getMinScale() const = 0;
//! Maximal scale to detect.
virtual void setMaxScale(double maxScale) = 0;
virtual double getMaxScale() const = 0;
//! Scale step.
virtual void setScaleStep(double scaleStep) = 0;
virtual double getScaleStep() const = 0;
//! Scale votes threshold.
virtual void setScaleThresh(int scaleThresh) = 0;
virtual int getScaleThresh() const = 0;
//! Position votes threshold.
virtual void setPosThresh(int posThresh) = 0;
virtual int getPosThresh() const = 0;
};
class CV_EXPORTS_W CLAHE : public Algorithm
{
public:
CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
CV_WRAP virtual double getClipLimit() const = 0;
CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
CV_WRAP virtual Size getTilesGridSize() const = 0;
CV_WRAP virtual void collectGarbage() = 0;
};
class CV_EXPORTS_W Subdiv2D
{
public:
enum { PTLOC_ERROR = -2,
PTLOC_OUTSIDE_RECT = -1,
PTLOC_INSIDE = 0,
PTLOC_VERTEX = 1,
PTLOC_ON_EDGE = 2
};
enum { NEXT_AROUND_ORG = 0x00,
NEXT_AROUND_DST = 0x22,
PREV_AROUND_ORG = 0x11,
PREV_AROUND_DST = 0x33,
NEXT_AROUND_LEFT = 0x13,
NEXT_AROUND_RIGHT = 0x31,
PREV_AROUND_LEFT = 0x20,
PREV_AROUND_RIGHT = 0x02
};
CV_WRAP Subdiv2D();
CV_WRAP Subdiv2D(Rect rect);
CV_WRAP void initDelaunay(Rect rect);
CV_WRAP int insert(Point2f pt);
CV_WRAP void insert(const std::vector<Point2f>& ptvec);
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
CV_OUT std::vector<Point2f>& facetCenters);
CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
CV_WRAP int nextEdge(int edge) const;
CV_WRAP int rotateEdge(int edge, int rotate) const;
CV_WRAP int symEdge(int edge) const;
CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
protected:
int newEdge();
void deleteEdge(int edge);
int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
void deletePoint(int vtx);
void setEdgePoints( int edge, int orgPt, int dstPt );
void splice( int edgeA, int edgeB );
int connectEdges( int edgeA, int edgeB );
void swapEdges( int edge );
int isRightOf(Point2f pt, int edge) const;
void calcVoronoi();
void clearVoronoi();
void checkSubdiv() const;
struct CV_EXPORTS Vertex
{
Vertex();
Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
bool isvirtual() const;
bool isfree() const;
int firstEdge;
int type;
Point2f pt;
};
struct CV_EXPORTS QuadEdge
{
QuadEdge();
QuadEdge(int edgeidx);
bool isfree() const;
int next[4];
int pt[4];
};
std::vector<Vertex> vtx;
std::vector<QuadEdge> qedges;
int freeQEdge;
int freePoint;
bool validGeometry;
int recentEdge;
Point2f topLeft;
Point2f bottomRight;
};
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
{
public:
/**
* Detect lines in the input image.
*
* @param _image A grayscale(CV_8UC1) input image.
* If only a roi needs to be selected, use
* lsd_ptr->detect(image(roi), ..., lines);
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
* @param _lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param prec Return: Vector of precisions with which the lines are found.
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
* This vector will be calculated _only_ when the objects type is REFINE_ADV
*/
CV_WRAP virtual void detect(InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray()) = 0;
/**
* Draw lines on the given canvas.
* @param _image The image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @param lines The lines that need to be drawn
*/
CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0;
/**
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
* @param size The size of the image, where lines were found.
* @param lines1 The first lines that need to be drawn. Color - Blue.
* @param lines2 The second lines that need to be drawn. Color - Red.
* @param _image Optional image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @return The number of mismatching pixels between lines1 and lines2.
*/
CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0;
virtual ~LineSegmentDetector() { }
};
//! Returns a pointer to a LineSegmentDetector class.
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
//! returns the Gaussian kernel with the specified parameters
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
//! initializes kernels of the generalized Sobel operator
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
int dx, int dy, int ksize,
bool normalize = false, int ktype = CV_32F );
//! returns the Gabor kernel with the specified parameters
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
//! returns structuring element of the specified shape and size
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
//! smooths the image using median filter.
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
//! smooths the image using Gaussian filter.
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
double sigmaX, double sigmaY = 0,
int borderType = BORDER_DEFAULT );
//! smooths the image using bilateral filter
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
double sigmaColor, double sigmaSpace,
int borderType = BORDER_DEFAULT );
//! smooths the image using the box filter. Each pixel is processed in O(1) time
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
Size ksize, Point anchor = Point(-1,-1),
bool normalize = true,
int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
Size ksize, Point anchor = Point(-1, -1),
bool normalize = true,
int borderType = BORDER_DEFAULT );
//! a synonym for normalized box filter
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
Size ksize, Point anchor = Point(-1,-1),
int borderType = BORDER_DEFAULT );
//! applies non-separable 2D linear filter to the image
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-1,-1),
double delta = 0, int borderType = BORDER_DEFAULT );
//! applies separable 2D linear filter to the image
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernelX, InputArray kernelY,
Point anchor = Point(-1,-1),
double delta = 0, int borderType = BORDER_DEFAULT );
//! applies generalized Sobel operator to the image
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
int dx, int dy, int ksize = 3,
double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
int dx, int dy, double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
//! applies Laplacian operator to the image
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
int ksize = 1, double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
//! applies Canny edge detector and produces the edge map.
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
double threshold1, double threshold2,
int apertureSize = 3, bool L2gradient = false );
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
int blockSize, int ksize = 3,
int borderType = BORDER_DEFAULT );
//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
int ksize, double k,
int borderType = BORDER_DEFAULT );
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
int blockSize, int ksize,
int borderType = BORDER_DEFAULT );
//! computes another complex cornerness criteria at each pixel
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
int borderType = BORDER_DEFAULT );
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
Size winSize, Size zeroZone,
TermCriteria criteria );
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray mask = noArray(), int blockSize = 3,
bool useHarrisDetector = false, double k = 0.04 );
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
double rho, double theta, int threshold,
double srn = 0, double stn = 0,
double min_theta = 0, double max_theta = CV_PI );
//! finds line segments in the black-n-white image using probabilistic Hough transform
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
double rho, double theta, int threshold,
double minLineLength = 0, double maxLineGap = 0 );
//! finds circles in the grayscale image using 2+1 gradient Hough transform
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
int method, double dp, double minDist,
double param1 = 100, double param2 = 100,
int minRadius = 0, int maxRadius = 0 );
//! erodes the image (applies the local minimum operator)
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
//! dilates the image (applies the local maximum operator)
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
//! applies an advanced morphological operation to the image
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
int op, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
//! resizes the image
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
Size dsize, double fx = 0, double fy = 0,
int interpolation = INTER_LINEAR );
//! warps the image using affine transformation
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
InputArray M, Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
//! warps the image using perspective transformation
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
InputArray M, Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
InputArray map1, InputArray map2,
int interpolation, int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
//! converts maps for remap from floating-point to fixed-point format or backwards
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
OutputArray dstmap1, OutputArray dstmap2,
int dstmap1type, bool nninterpolation = false );
//! returns 2x3 affine transformation matrix for the planar rotation.
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
//! extracts rectangle from the image at sub-pixel location
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
Point2f center, OutputArray patch, int patchType = -1 );
//! computes the log polar transform
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
Point2f center, double M, int flags );
//! computes the linear polar transform
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
Point2f center, double maxRadius, int flags );
//! computes the integral image
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
//! computes the integral image and integral for the squared image
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
//! computes the integral image, integral for the squared image and the tilted integral image
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
OutputArray sqsum, OutputArray tilted,
int sdepth = -1, int sqdepth = -1 );
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
InputArray mask = noArray() );
//! adds squared src image to the accumulator (dst += src*src).
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
InputArray mask = noArray() );
//! adds product of the 2 images to the accumulator (dst += src1*src2).
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
InputOutputArray dst, InputArray mask=noArray() );
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
double alpha, InputArray mask = noArray() );
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
InputArray window = noArray(), CV_OUT double* response = 0);
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
//! applies fixed threshold to the image
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
double thresh, double maxval, int type );
//! applies variable (adaptive) threshold to the image
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
double maxValue, int adaptiveMethod,
int thresholdType, int blockSize, double C );
//! smooths and downsamples the image
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
//! upsamples and smoothes the image
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
//! builds the gaussian pyramid using pyrDown() as a basic operation
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
int maxlevel, int borderType = BORDER_DEFAULT );
//! corrects lens distortion for the given camera matrix and distortion coefficients
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
InputArray cameraMatrix,
InputArray distCoeffs,
InputArray newCameraMatrix = noArray() );
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
InputArray R, InputArray newCameraMatrix,
Size size, int m1type, OutputArray map1, OutputArray map2 );
//! initializes maps for cv::remap() for wide-angle
CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
Size imageSize, int destImageWidth,
int m1type, OutputArray map1, OutputArray map2,
int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(),
bool centerPrincipalPoint = false );
//! returns points' coordinates after lens distortion correction
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
InputArray cameraMatrix, InputArray distCoeffs,
InputArray R = noArray(), InputArray P = noArray());
//! computes the joint dense histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
OutputArray hist, int dims, const int* histSize,
const float** ranges, bool uniform = true, bool accumulate = false );
//! computes the joint sparse histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
SparseMat& hist, int dims,
const int* histSize, const float** ranges,
bool uniform = true, bool accumulate = false );
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
const std::vector<int>& channels,
InputArray mask, OutputArray hist,
const std::vector<int>& histSize,
const std::vector<float>& ranges,
bool accumulate = false );
//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, InputArray hist,
OutputArray backProject, const float** ranges,
double scale = 1, bool uniform = true );
//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, const SparseMat& hist,
OutputArray backProject, const float** ranges,
double scale = 1, bool uniform = true );
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
InputArray hist, OutputArray dst,
const std::vector<float>& ranges,
double scale );
//! compares two histograms stored in dense arrays
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
//! compares two histograms stored in sparse arrays
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
int distType, InputArray cost=noArray(),
float* lowerBound = 0, OutputArray flow = noArray() );
//! segments the image using watershed algorithm
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
//! filters image using meanshift algorithm
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
double sp, double sr, int maxLevel = 1,
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
//! segments the image using GrabCut algorithm
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, int mode = GC_EVAL );
//! builds the discrete Voronoi diagram
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
OutputArray labels, int distanceType, int maskSize,
int labelType = DIST_LABEL_CCOMP );
//! computes the distance transform map
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
int distanceType, int maskSize, int dstType=CV_32F);
//! fills the semi-uniform image region starting from the specified seed point
CV_EXPORTS int floodFill( InputOutputArray image,
Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
int flags = 4 );
//! fills the semi-uniform image region and/or the mask starting from the specified seed point
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
int flags = 4 );
//! converts image from one color space to another
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
// main function for all demosaicing procceses
CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0);
//! computes moments of the rasterized shape or a vector of points
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
//! computes 7 Hu invariants from the moments
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
OutputArray result, int method );
// computes the connected components labeled image of boolean image ``image``
// with 4 or 8 way connectivity - returns N, the total
// number of labels [0, N-1] where 0 represents the background label.
// ltype specifies the output label image type, an important
// consideration based on the total number of labels or
// alternatively the total number of pixels in the source image.
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
int connectivity = 8, int ltype = CV_32S);
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
OutputArray stats, OutputArray centroids,
int connectivity = 8, int ltype = CV_32S);
//! retrieves contours and the hierarchical information from black-n-white image.
CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
OutputArray hierarchy, int mode,
int method, Point offset = Point());
//! retrieves contours from black-n-white image.
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
int mode, int method, Point offset = Point());
//! approximates contour or a curve using Douglas-Peucker algorithm
CV_EXPORTS_W void approxPolyDP( InputArray curve,
OutputArray approxCurve,
double epsilon, bool closed );
//! computes the contour perimeter (closed=true) or a curve length
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
//! computes the bounding rectangle for a contour
CV_EXPORTS_W Rect boundingRect( InputArray points );
//! computes the contour area
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
//! computes the minimal rotated rectangle for a set of points
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
//! computes boxpoints
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
//! computes the minimal enclosing circle for a set of points
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
CV_OUT Point2f& center, CV_OUT float& radius );
//! computes the minimal enclosing triangle for a set of points and returns its area
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
//! matches two contours using one of the available algorithms
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
int method, double parameter );
//! computes convex hull for a set of 2D points.
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
bool clockwise = false, bool returnPoints = true );
//! computes the contour convexity defects
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
//! returns true if the contour is convex. Does not support contours with self-intersection
CV_EXPORTS_W bool isContourConvex( InputArray contour );
//! finds intersection of two convex polygons
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
OutputArray _p12, bool handleNested = true );
//! fits ellipse to the set of 2D points
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
//! fits line to the set of 2D points using M-estimator algorithm
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
double param, double reps, double aeps );
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
//! computes whether two rotated rectangles intersect and returns the vertices of the intersecting region
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion );
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
//! Detects position, traslation and rotation
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
//! Performs linear blending of two images
CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
enum
{
COLORMAP_AUTUMN = 0,
COLORMAP_BONE = 1,
COLORMAP_JET = 2,
COLORMAP_WINTER = 3,
COLORMAP_RAINBOW = 4,
COLORMAP_OCEAN = 5,
COLORMAP_SUMMER = 6,
COLORMAP_SPRING = 7,
COLORMAP_COOL = 8,
COLORMAP_HSV = 9,
COLORMAP_PINK = 10,
COLORMAP_HOT = 11
};
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
//! draws the line segment (pt1, pt2) in the image
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0);
//! draws an arrow from pt1 to pt2 in the image
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
//! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws the rectangle outline or a solid rectangle covering rec in the image
CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws the circle outline or a solid circle in the image
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws an elliptic arc, ellipse sector or a rotated ellipse in the image
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
double angle, double startAngle, double endAngle,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws a rotated ellipse in the image
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
int thickness = 1, int lineType = LINE_8);
//! draws a filled convex polygon in the image
CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
//! fills an area bounded by one or more polygons
CV_EXPORTS void fillPoly(Mat& img, const Point** pts,
const int* npts, int ncontours,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
//! draws one or more polygonal curves
CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts,
int ncontours, bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
//! draws contours in the image
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
int contourIdx, const Scalar& color,
int thickness = 1, int lineType = LINE_8,
InputArray hierarchy = noArray(),
int maxLevel = INT_MAX, Point offset = Point() );
//! clips the line segment by the rectangle Rect(0, 0, imgSize.width, imgSize.height)
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
//! clips the line segment by the rectangle imgRect
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
//! converts elliptic arc to a polygonal curve
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
int arcStart, int arcEnd, int delta,
CV_OUT std::vector<Point>& pts );
//! renders text string in the image
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
int fontFace, double fontScale, Scalar color,
int thickness = 1, int lineType = LINE_8,
bool bottomLeftOrigin = false );
//! returns bounding box of the text string
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
double fontScale, int thickness,
CV_OUT int* baseLine);
} // cv
#endif