opencv/samples/cpp/erfilter.cpp

106 lines
3.3 KiB
C++

//--------------------------------------------------------------------------------------------------
// A demo program of the Extremal Region Filter algorithm described in
// Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
//--------------------------------------------------------------------------------------------------
#include "opencv2/opencv.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <vector>
#include <iostream>
#include <iomanip>
using namespace std;
using namespace cv;
void show_help_and_exit(const char *cmd);
void groups_draw(Mat &src, vector<Rect> &groups);
void er_draw(Mat &src, Mat &dst, ERStat& er);
int main(int argc, const char * argv[])
{
if (argc < 2) show_help_and_exit(argv[0]);
Mat src = imread(argv[1]);
// Extract channels to be processed individually
vector<Mat> channels;
computeNMChannels(src, channels);
int cn = (int)channels.size();
// Append negative channels to detect ER- (bright regions over dark background)
for (int c = 0; c < cn-1; c++)
channels.push_back(255-channels[c]);
// Create ERFilter objects with the 1st and 2nd stage default classifiers
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00025,0.13,0.4,true,0.1);
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.3);
vector<vector<ERStat> > regions(channels.size());
// Apply the default cascade classifier to each independent channel (could be done in parallel)
for (int c=0; c<(int)channels.size(); c++)
{
er_filter1->run(channels[c], regions[c]);
er_filter2->run(channels[c], regions[c]);
}
// Detect character groups
vector<Rect> groups;
erGrouping(channels, regions, groups);
// draw groups
groups_draw(src, groups);
imshow("grouping",src);
waitKey(-1);
// memory clean-up
er_filter1.release();
er_filter2.release();
regions.clear();
if (!groups.empty())
{
groups.clear();
}
}
// helper functions
void show_help_and_exit(const char *cmd)
{
cout << endl << cmd << endl << endl;
cout << "Demo program of the Extremal Region Filter algorithm described in " << endl;
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
cout << " Usage: " << cmd << " <input_image> " << endl;
cout << " Default classifier files (trained_classifierNM*.xml) must be in current directory" << endl << endl;
exit(-1);
}
void groups_draw(Mat &src, vector<Rect> &groups)
{
for (int i=groups.size()-1; i>=0; i--)
{
if (src.type() == CV_8UC3)
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 0, 255, 255 ), 3, 8 );
else
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 255 ), 3, 8 );
}
}
void er_draw(Mat &src, Mat &dst, ERStat& er)
{
if (er.parent != NULL) // deprecate the root region
{
int newMaskVal = 255;
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
floodFill(src,dst,Point(er.pixel%src.cols,er.pixel/src.cols),Scalar(255),0,Scalar(er.level),Scalar(0),flags);
}
}