312 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_CUDAOPTFLOW_HPP__
 | |
| #define __OPENCV_CUDAOPTFLOW_HPP__
 | |
| 
 | |
| #ifndef __cplusplus
 | |
| #  error cudaoptflow.hpp header must be compiled as C++
 | |
| #endif
 | |
| 
 | |
| #include "opencv2/core/cuda.hpp"
 | |
| 
 | |
| namespace cv { namespace cuda {
 | |
| 
 | |
| class CV_EXPORTS BroxOpticalFlow
 | |
| {
 | |
| public:
 | |
|     BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
 | |
|         alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
 | |
|         inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     //! Compute optical flow
 | |
|     //! frame0 - source frame (supports only CV_32FC1 type)
 | |
|     //! frame1 - frame to track (with the same size and type as frame0)
 | |
|     //! u      - flow horizontal component (along x axis)
 | |
|     //! v      - flow vertical component (along y axis)
 | |
|     void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
 | |
| 
 | |
|     //! flow smoothness
 | |
|     float alpha;
 | |
| 
 | |
|     //! gradient constancy importance
 | |
|     float gamma;
 | |
| 
 | |
|     //! pyramid scale factor
 | |
|     float scale_factor;
 | |
| 
 | |
|     //! number of lagged non-linearity iterations (inner loop)
 | |
|     int inner_iterations;
 | |
| 
 | |
|     //! number of warping iterations (number of pyramid levels)
 | |
|     int outer_iterations;
 | |
| 
 | |
|     //! number of linear system solver iterations
 | |
|     int solver_iterations;
 | |
| 
 | |
|     GpuMat buf;
 | |
| };
 | |
| 
 | |
| class CV_EXPORTS PyrLKOpticalFlow
 | |
| {
 | |
| public:
 | |
|     PyrLKOpticalFlow();
 | |
| 
 | |
|     void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
 | |
|         GpuMat& status, GpuMat* err = 0);
 | |
| 
 | |
|     void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
 | |
| 
 | |
|     void releaseMemory();
 | |
| 
 | |
|     Size winSize;
 | |
|     int maxLevel;
 | |
|     int iters;
 | |
|     bool useInitialFlow;
 | |
| 
 | |
| private:
 | |
|     std::vector<GpuMat> prevPyr_;
 | |
|     std::vector<GpuMat> nextPyr_;
 | |
| 
 | |
|     GpuMat buf_;
 | |
| 
 | |
|     GpuMat uPyr_[2];
 | |
|     GpuMat vPyr_[2];
 | |
| };
 | |
| 
 | |
| class CV_EXPORTS FarnebackOpticalFlow
 | |
| {
 | |
| public:
 | |
|     FarnebackOpticalFlow()
 | |
|     {
 | |
|         numLevels = 5;
 | |
|         pyrScale = 0.5;
 | |
|         fastPyramids = false;
 | |
|         winSize = 13;
 | |
|         numIters = 10;
 | |
|         polyN = 5;
 | |
|         polySigma = 1.1;
 | |
|         flags = 0;
 | |
|     }
 | |
| 
 | |
|     int numLevels;
 | |
|     double pyrScale;
 | |
|     bool fastPyramids;
 | |
|     int winSize;
 | |
|     int numIters;
 | |
|     int polyN;
 | |
|     double polySigma;
 | |
|     int flags;
 | |
| 
 | |
|     void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
 | |
| 
 | |
|     void releaseMemory()
 | |
|     {
 | |
|         frames_[0].release();
 | |
|         frames_[1].release();
 | |
|         pyrLevel_[0].release();
 | |
|         pyrLevel_[1].release();
 | |
|         M_.release();
 | |
|         bufM_.release();
 | |
|         R_[0].release();
 | |
|         R_[1].release();
 | |
|         blurredFrame_[0].release();
 | |
|         blurredFrame_[1].release();
 | |
|         pyramid0_.clear();
 | |
|         pyramid1_.clear();
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void prepareGaussian(
 | |
|             int n, double sigma, float *g, float *xg, float *xxg,
 | |
|             double &ig11, double &ig03, double &ig33, double &ig55);
 | |
| 
 | |
|     void setPolynomialExpansionConsts(int n, double sigma);
 | |
| 
 | |
|     void updateFlow_boxFilter(
 | |
|             const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
 | |
|             GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
 | |
| 
 | |
|     void updateFlow_gaussianBlur(
 | |
|             const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
 | |
|             GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
 | |
| 
 | |
|     GpuMat frames_[2];
 | |
|     GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
 | |
|     std::vector<GpuMat> pyramid0_, pyramid1_;
 | |
| };
 | |
| 
 | |
| // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
 | |
| //
 | |
| // see reference:
 | |
| //   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
 | |
| //   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
 | |
| class CV_EXPORTS OpticalFlowDual_TVL1_CUDA
 | |
| {
 | |
| public:
 | |
|     OpticalFlowDual_TVL1_CUDA();
 | |
| 
 | |
|     void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
 | |
| 
 | |
|     void collectGarbage();
 | |
| 
 | |
|     /**
 | |
|      * Time step of the numerical scheme.
 | |
|      */
 | |
|     double tau;
 | |
| 
 | |
|     /**
 | |
|      * Weight parameter for the data term, attachment parameter.
 | |
|      * This is the most relevant parameter, which determines the smoothness of the output.
 | |
|      * The smaller this parameter is, the smoother the solutions we obtain.
 | |
|      * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
 | |
|      */
 | |
|     double lambda;
 | |
| 
 | |
|     /**
 | |
|      * Weight parameter for (u - v)^2, tightness parameter.
 | |
|      * It serves as a link between the attachment and the regularization terms.
 | |
|      * In theory, it should have a small value in order to maintain both parts in correspondence.
 | |
|      * The method is stable for a large range of values of this parameter.
 | |
|      */
 | |
|     double theta;
 | |
| 
 | |
|     /**
 | |
|      * Number of scales used to create the pyramid of images.
 | |
|      */
 | |
|     int nscales;
 | |
| 
 | |
|     /**
 | |
|      * Number of warpings per scale.
 | |
|      * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
 | |
|      * This is a parameter that assures the stability of the method.
 | |
|      * It also affects the running time, so it is a compromise between speed and accuracy.
 | |
|      */
 | |
|     int warps;
 | |
| 
 | |
|     /**
 | |
|      * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
 | |
|      * A small value will yield more accurate solutions at the expense of a slower convergence.
 | |
|      */
 | |
|     double epsilon;
 | |
| 
 | |
|     /**
 | |
|      * Stopping criterion iterations number used in the numerical scheme.
 | |
|      */
 | |
|     int iterations;
 | |
| 
 | |
|     double scaleStep;
 | |
| 
 | |
|     bool useInitialFlow;
 | |
| 
 | |
| private:
 | |
|     void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
 | |
| 
 | |
|     std::vector<GpuMat> I0s;
 | |
|     std::vector<GpuMat> I1s;
 | |
|     std::vector<GpuMat> u1s;
 | |
|     std::vector<GpuMat> u2s;
 | |
| 
 | |
|     GpuMat I1x_buf;
 | |
|     GpuMat I1y_buf;
 | |
| 
 | |
|     GpuMat I1w_buf;
 | |
|     GpuMat I1wx_buf;
 | |
|     GpuMat I1wy_buf;
 | |
| 
 | |
|     GpuMat grad_buf;
 | |
|     GpuMat rho_c_buf;
 | |
| 
 | |
|     GpuMat p11_buf;
 | |
|     GpuMat p12_buf;
 | |
|     GpuMat p21_buf;
 | |
|     GpuMat p22_buf;
 | |
| 
 | |
|     GpuMat diff_buf;
 | |
|     GpuMat norm_buf;
 | |
| };
 | |
| 
 | |
| //! Calculates optical flow for 2 images using block matching algorithm */
 | |
| CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
 | |
|                                   Size block_size, Size shift_size, Size max_range, bool use_previous,
 | |
|                                   GpuMat& velx, GpuMat& vely, GpuMat& buf,
 | |
|                                   Stream& stream = Stream::Null());
 | |
| 
 | |
| class CV_EXPORTS FastOpticalFlowBM
 | |
| {
 | |
| public:
 | |
|     void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
 | |
| 
 | |
| private:
 | |
|     GpuMat buffer;
 | |
|     GpuMat extended_I0;
 | |
|     GpuMat extended_I1;
 | |
| };
 | |
| 
 | |
| //! Interpolate frames (images) using provided optical flow (displacement field).
 | |
| //! frame0   - frame 0 (32-bit floating point images, single channel)
 | |
| //! frame1   - frame 1 (the same type and size)
 | |
| //! fu       - forward horizontal displacement
 | |
| //! fv       - forward vertical displacement
 | |
| //! bu       - backward horizontal displacement
 | |
| //! bv       - backward vertical displacement
 | |
| //! pos      - new frame position
 | |
| //! newFrame - new frame
 | |
| //! buf      - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
 | |
| //!            occlusion masks            0, occlusion masks            1,
 | |
| //!            interpolated forward flow  0, interpolated forward flow  1,
 | |
| //!            interpolated backward flow 0, interpolated backward flow 1
 | |
| //!
 | |
| CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
 | |
|                                   const GpuMat& fu, const GpuMat& fv,
 | |
|                                   const GpuMat& bu, const GpuMat& bv,
 | |
|                                   float pos, GpuMat& newFrame, GpuMat& buf,
 | |
|                                   Stream& stream = Stream::Null());
 | |
| 
 | |
| CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
 | |
| 
 | |
| }} // namespace cv { namespace cuda {
 | |
| 
 | |
| #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */
 | 
