137 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
 | |
| {
 | |
|     validationFN = "slvalidation.xml";
 | |
| }
 | |
| 
 | |
| int CV_SLMLTest::run_test_case( int testCaseIdx )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     code = prepare_test_case( testCaseIdx );
 | |
| 
 | |
|     if( code == cvtest::TS::OK )
 | |
|     {
 | |
|             data.mix_train_and_test_idx();
 | |
|             code = train( testCaseIdx );
 | |
|             if( code == cvtest::TS::OK )
 | |
|             {
 | |
|                 get_error( testCaseIdx, CV_TEST_ERROR, &test_resps1 );
 | |
|                 fname1 = tempfile(".yml.gz");
 | |
|                 save( fname1.c_str() );
 | |
|                 load( fname1.c_str() );
 | |
|                 get_error( testCaseIdx, CV_TEST_ERROR, &test_resps2 );
 | |
|                 fname2 = tempfile(".yml.gz");
 | |
|                 save( fname2.c_str() );
 | |
|             }
 | |
|             else
 | |
|                 ts->printf( cvtest::TS::LOG, "model can not be trained" );
 | |
|     }
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| int CV_SLMLTest::validate_test_results( int testCaseIdx )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
| 
 | |
|     // 1. compare files
 | |
|     ifstream f1( fname1.c_str() ), f2( fname2.c_str() );
 | |
|     string s1, s2;
 | |
|     int lineIdx = 0;
 | |
|     CV_Assert( f1.is_open() && f2.is_open() );
 | |
|     for( ; !f1.eof() && !f2.eof(); lineIdx++ )
 | |
|     {
 | |
|         getline( f1, s1 );
 | |
|         getline( f2, s2 );
 | |
|         if( s1.compare(s2) )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s",
 | |
|                lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() );
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|         }
 | |
|     }
 | |
|     if( !f1.eof() || !f2.eof() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "in test case %d first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s",
 | |
|             testCaseIdx, lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() );
 | |
|         code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|     }
 | |
|     f1.close();
 | |
|     f2.close();
 | |
|     // delete temporary files
 | |
|     remove( fname1.c_str() );
 | |
|     remove( fname2.c_str() );
 | |
| 
 | |
|     // 2. compare responses
 | |
|     CV_Assert( test_resps1.size() == test_resps2.size() );
 | |
|     vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
 | |
|     for( ; it1 != test_resps1.end(); ++it1, ++it2 )
 | |
|     {
 | |
|         if( fabs(*it1 - *it2) > FLT_EPSILON )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx );
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|         }
 | |
|     }
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
 | |
| //CV_SLMLTest lsmlknearest( CV_KNEAREST, "slknearest" ); // does not support save!
 | |
| TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
 | |
| //CV_SLMLTest lsmlem( CV_EM, "slem" ); // does not support save!
 | |
| TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
 | |
| TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
 | |
| TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
 | |
| TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
 | |
| TEST(ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
 | |
| 
 | |
| /* End of file. */
 | 
