398 lines
12 KiB
C++
398 lines
12 KiB
C++
#include "precomp.hpp"
|
|
#include "_lsvm_distancetransform.h"
|
|
|
|
/*
|
|
// Computation the point of intersection functions
|
|
// (parabolas on the variable y)
|
|
// a(y - q1) + b(q1 - y)(q1 - y) + f[q1]
|
|
// a(y - q2) + b(q2 - y)(q2 - y) + f[q2]
|
|
//
|
|
//
|
|
// API
|
|
// int GetPointOfIntersection(const float *f,
|
|
const float a, const float b,
|
|
int q1, int q2, float *point);
|
|
// INPUT
|
|
// f - function on the regular grid
|
|
// a - coefficient of the function
|
|
// b - coefficient of the function
|
|
// q1 - parameter of the function
|
|
// q2 - parameter of the function
|
|
// OUTPUT
|
|
// point - point of intersection
|
|
// RESULT
|
|
// Error status
|
|
*/
|
|
int GetPointOfIntersection(const float *f,
|
|
const float a, const float b,
|
|
int q1, int q2, float *point)
|
|
{
|
|
if (q1 == q2)
|
|
{
|
|
return DISTANCE_TRANSFORM_EQUAL_POINTS;
|
|
} /* if (q1 == q2) */
|
|
(*point) = ( (f[q2] - a * q2 + b *q2 * q2) -
|
|
(f[q1] - a * q1 + b * q1 * q1) ) / (2 * b * (q2 - q1));
|
|
return DISTANCE_TRANSFORM_OK;
|
|
}
|
|
|
|
/*
|
|
// Decision of one dimensional problem generalized distance transform
|
|
// on the regular grid at all points
|
|
// min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y')
|
|
//
|
|
// API
|
|
// int DistanceTransformOneDimensionalProblem(const float *f, const int n,
|
|
const float a, const float b,
|
|
float *distanceTransform,
|
|
int *points);
|
|
// INPUT
|
|
// f - function on the regular grid
|
|
// n - grid dimension
|
|
// a - coefficient of optimizable function
|
|
// b - coefficient of optimizable function
|
|
// OUTPUT
|
|
// distanceTransform - values of generalized distance transform
|
|
// points - arguments that corresponds to the optimal value of function
|
|
// RESULT
|
|
// Error status
|
|
*/
|
|
int DistanceTransformOneDimensionalProblem(const float *f, const int n,
|
|
const float a, const float b,
|
|
float *distanceTransform,
|
|
int *points)
|
|
{
|
|
int i, k;
|
|
int tmp;
|
|
int diff;
|
|
float pointIntersection;
|
|
int *v;
|
|
float *z;
|
|
k = 0;
|
|
|
|
// Allocation memory (must be free in this function)
|
|
v = (int *)malloc (sizeof(int) * n);
|
|
z = (float *)malloc (sizeof(float) * (n + 1));
|
|
|
|
v[0] = 0;
|
|
z[0] = (float)F_MIN; // left border of envelope
|
|
z[1] = (float)F_MAX; // right border of envelope
|
|
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection);
|
|
if (tmp != DISTANCE_TRANSFORM_OK)
|
|
{
|
|
free(v);
|
|
free(z);
|
|
return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR;
|
|
} /* if (tmp != DISTANCE_TRANSFORM_OK) */
|
|
if (pointIntersection <= z[k])
|
|
{
|
|
// Envelope doesn't contain current parabola
|
|
do
|
|
{
|
|
k--;
|
|
tmp = GetPointOfIntersection(f, a, b, v[k], i, &pointIntersection);
|
|
if (tmp != DISTANCE_TRANSFORM_OK)
|
|
{
|
|
free(v);
|
|
free(z);
|
|
return DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR;
|
|
} /* if (tmp != DISTANCE_TRANSFORM_OK) */
|
|
}while (pointIntersection <= z[k]);
|
|
// Addition parabola to the envelope
|
|
k++;
|
|
v[k] = i;
|
|
z[k] = pointIntersection;
|
|
z[k + 1] = (float)F_MAX;
|
|
}
|
|
else
|
|
{
|
|
// Addition parabola to the envelope
|
|
k++;
|
|
v[k] = i;
|
|
z[k] = pointIntersection;
|
|
z[k + 1] = (float)F_MAX;
|
|
} /* if (pointIntersection <= z[k]) */
|
|
}
|
|
|
|
// Computation values of generalized distance transform at all grid points
|
|
k = 0;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
while (z[k + 1] < i)
|
|
{
|
|
k++;
|
|
}
|
|
points[i] = v[k];
|
|
diff = i - v[k];
|
|
distanceTransform[i] = a * diff + b * diff * diff + f[v[k]];
|
|
}
|
|
|
|
// Release allocated memory
|
|
free(v);
|
|
free(z);
|
|
return DISTANCE_TRANSFORM_OK;
|
|
}
|
|
|
|
/*
|
|
// Computation next cycle element
|
|
//
|
|
// API
|
|
// int GetNextCycleElement(int k, int n, int q);
|
|
// INPUT
|
|
// k - index of the previous cycle element
|
|
// n - number of matrix rows
|
|
// q - parameter that equal
|
|
(number_of_rows * number_of_columns - 1)
|
|
// OUTPUT
|
|
// None
|
|
// RESULT
|
|
// Next cycle element
|
|
*/
|
|
int GetNextCycleElement(int k, int n, int q)
|
|
{
|
|
return ((k * n) % q);
|
|
}
|
|
|
|
/*
|
|
// Transpose cycle elements
|
|
//
|
|
// API
|
|
// void TransposeCycleElements(float *a, int *cycle, int cycle_len)
|
|
// INPUT
|
|
// a - initial matrix
|
|
// cycle - indeces array of cycle
|
|
// cycle_len - number of elements in the cycle
|
|
// OUTPUT
|
|
// a - matrix with transposed elements
|
|
// RESULT
|
|
// Error status
|
|
*/
|
|
void TransposeCycleElements(float *a, int *cycle, int cycle_len)
|
|
{
|
|
int i;
|
|
float buf;
|
|
for (i = cycle_len - 1; i > 0 ; i--)
|
|
{
|
|
buf = a[ cycle[i] ];
|
|
a[ cycle[i] ] = a[ cycle[i - 1] ];
|
|
a[ cycle[i - 1] ] = buf;
|
|
}
|
|
}
|
|
|
|
/*
|
|
// Transpose cycle elements
|
|
//
|
|
// API
|
|
// void TransposeCycleElements(int *a, int *cycle, int cycle_len)
|
|
// INPUT
|
|
// a - initial matrix
|
|
// cycle - indeces array of cycle
|
|
// cycle_len - number of elements in the cycle
|
|
// OUTPUT
|
|
// a - matrix with transposed elements
|
|
// RESULT
|
|
// Error status
|
|
*/
|
|
void TransposeCycleElements_int(int *a, int *cycle, int cycle_len)
|
|
{
|
|
int i;
|
|
int buf;
|
|
for (i = cycle_len - 1; i > 0 ; i--)
|
|
{
|
|
buf = a[ cycle[i] ];
|
|
a[ cycle[i] ] = a[ cycle[i - 1] ];
|
|
a[ cycle[i - 1] ] = buf;
|
|
}
|
|
}
|
|
|
|
/*
|
|
// Getting transposed matrix
|
|
//
|
|
// API
|
|
// void Transpose(float *a, int n, int m);
|
|
// INPUT
|
|
// a - initial matrix
|
|
// n - number of rows
|
|
// m - number of columns
|
|
// OUTPUT
|
|
// a - transposed matrix
|
|
// RESULT
|
|
// None
|
|
*/
|
|
void Transpose(float *a, int n, int m)
|
|
{
|
|
int *cycle;
|
|
int i, k, q, cycle_len;
|
|
int max_cycle_len;
|
|
|
|
max_cycle_len = n * m;
|
|
|
|
// Allocation memory (must be free in this function)
|
|
cycle = (int *)malloc(sizeof(int) * max_cycle_len);
|
|
|
|
cycle_len = 0;
|
|
q = n * m - 1;
|
|
for (i = 1; i < q; i++)
|
|
{
|
|
k = GetNextCycleElement(i, n, q);
|
|
cycle[cycle_len] = i;
|
|
cycle_len++;
|
|
|
|
while (k > i)
|
|
{
|
|
cycle[cycle_len] = k;
|
|
cycle_len++;
|
|
k = GetNextCycleElement(k, n, q);
|
|
}
|
|
if (k == i)
|
|
{
|
|
TransposeCycleElements(a, cycle, cycle_len);
|
|
} /* if (k == i) */
|
|
cycle_len = 0;
|
|
}
|
|
|
|
// Release allocated memory
|
|
free(cycle);
|
|
}
|
|
|
|
/*
|
|
// Getting transposed matrix
|
|
//
|
|
// API
|
|
// void Transpose_int(int *a, int n, int m);
|
|
// INPUT
|
|
// a - initial matrix
|
|
// n - number of rows
|
|
// m - number of columns
|
|
// OUTPUT
|
|
// a - transposed matrix
|
|
// RESULT
|
|
// None
|
|
*/
|
|
void Transpose_int(int *a, int n, int m)
|
|
{
|
|
int *cycle;
|
|
int i, k, q, cycle_len;
|
|
int max_cycle_len;
|
|
|
|
max_cycle_len = n * m;
|
|
|
|
// Allocation memory (must be free in this function)
|
|
cycle = (int *)malloc(sizeof(int) * max_cycle_len);
|
|
|
|
cycle_len = 0;
|
|
q = n * m - 1;
|
|
for (i = 1; i < q; i++)
|
|
{
|
|
k = GetNextCycleElement(i, n, q);
|
|
cycle[cycle_len] = i;
|
|
cycle_len++;
|
|
|
|
while (k > i)
|
|
{
|
|
cycle[cycle_len] = k;
|
|
cycle_len++;
|
|
k = GetNextCycleElement(k, n, q);
|
|
}
|
|
if (k == i)
|
|
{
|
|
TransposeCycleElements_int(a, cycle, cycle_len);
|
|
} /* if (k == i) */
|
|
cycle_len = 0;
|
|
}
|
|
|
|
// Release allocated memory
|
|
free(cycle);
|
|
}
|
|
|
|
/*
|
|
// Decision of two dimensional problem generalized distance transform
|
|
// on the regular grid at all points
|
|
// min{d2(y' - y) + d4(y' - y)(y' - y) +
|
|
min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y')
|
|
//
|
|
// API
|
|
// int DistanceTransformTwoDimensionalProblem(const float *f,
|
|
const int n, const int m,
|
|
const float coeff[4],
|
|
float *distanceTransform,
|
|
int *pointsX, int *pointsY);
|
|
// INPUT
|
|
// f - function on the regular grid
|
|
// n - number of rows
|
|
// m - number of columns
|
|
// coeff - coefficients of optimizable function
|
|
coeff[0] = d1, coeff[1] = d2,
|
|
coeff[2] = d3, coeff[3] = d4
|
|
// OUTPUT
|
|
// distanceTransform - values of generalized distance transform
|
|
// pointsX - arguments x' that correspond to the optimal value
|
|
// pointsY - arguments y' that correspond to the optimal value
|
|
// RESULT
|
|
// Error status
|
|
*/
|
|
int DistanceTransformTwoDimensionalProblem(const float *f,
|
|
const int n, const int m,
|
|
const float coeff[4],
|
|
float *distanceTransform,
|
|
int *pointsX, int *pointsY)
|
|
{
|
|
int i, j, tmp;
|
|
int resOneDimProblem;
|
|
float *internalDistTrans;
|
|
int *internalPointsX;
|
|
int size = n * m;
|
|
|
|
// Allocation memory (must be free in this function)
|
|
internalDistTrans = (float *)malloc(sizeof(float) * size);
|
|
internalPointsX = (int *)malloc(sizeof(int) * size);
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
resOneDimProblem = DistanceTransformOneDimensionalProblem(
|
|
f + i * m, m,
|
|
coeff[0], coeff[2],
|
|
internalDistTrans + i * m,
|
|
internalPointsX + i * m);
|
|
if (resOneDimProblem != DISTANCE_TRANSFORM_OK)
|
|
{
|
|
free(internalDistTrans);
|
|
return DISTANCE_TRANSFORM_ERROR;
|
|
} /* if (resOneDimProblem != DISTANCE_TRANSFORM_OK) */
|
|
}
|
|
Transpose(internalDistTrans, n, m);
|
|
for (j = 0; j < m; j++)
|
|
{
|
|
resOneDimProblem = DistanceTransformOneDimensionalProblem(
|
|
internalDistTrans + j * n, n,
|
|
coeff[1], coeff[3],
|
|
distanceTransform + j * n,
|
|
pointsY + j * n);
|
|
if (resOneDimProblem != DISTANCE_TRANSFORM_OK)
|
|
{
|
|
free(internalDistTrans);
|
|
return DISTANCE_TRANSFORM_ERROR;
|
|
} /* if (resOneDimProblem != DISTANCE_TRANSFORM_OK) */
|
|
}
|
|
Transpose(distanceTransform, m, n);
|
|
Transpose_int(pointsY, m, n);
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
for (j = 0; j < m; j++)
|
|
{
|
|
tmp = pointsY[i * m + j];
|
|
pointsX[i * m + j] = internalPointsX[tmp * m + j];
|
|
}
|
|
}
|
|
|
|
// Release allocated memory
|
|
free(internalDistTrans);
|
|
free(internalPointsX);
|
|
return DISTANCE_TRANSFORM_OK;
|
|
}
|