 cd0e95de16
			
		
	
	cd0e95de16
	
	
	
		
			
			* remove overloads with explicit buffer, now BufferPool is used * added async versions for all reduce functions
		
			
				
	
	
		
			1085 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1085 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Norm
 | |
| 
 | |
| PARAM_TEST_CASE(Norm, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     int normCode;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         normCode = GET_PARAM(3);
 | |
|         useRoi = GET_PARAM(4);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Norm, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
|     cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
 | |
| 
 | |
|     double val = cv::cuda::norm(loadMat(src, useRoi), normCode, loadMat(mask, useRoi));
 | |
| 
 | |
|     double val_gold = cv::norm(src, normCode, mask);
 | |
| 
 | |
|     EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Norm, Async)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
|     cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
 | |
| 
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::calcNorm(loadMat(src, useRoi), dst, normCode, loadMat(mask, useRoi), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     double val;
 | |
|     dst.createMatHeader().convertTo(cv::Mat(1, 1, CV_64FC1, &val), CV_64F);
 | |
| 
 | |
|     double val_gold = cv::norm(src, normCode, mask);
 | |
| 
 | |
|     EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Norm, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatDepth(CV_8U),
 | |
|                     MatDepth(CV_8S),
 | |
|                     MatDepth(CV_16U),
 | |
|                     MatDepth(CV_16S),
 | |
|                     MatDepth(CV_32S),
 | |
|                     MatDepth(CV_32F)),
 | |
|     testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // normDiff
 | |
| 
 | |
| PARAM_TEST_CASE(NormDiff, cv::cuda::DeviceInfo, cv::Size, NormCode, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int normCode;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         normCode = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(NormDiff, Accuracy)
 | |
| {
 | |
|     cv::Mat src1 = randomMat(size, CV_8UC1);
 | |
|     cv::Mat src2 = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     double val = cv::cuda::norm(loadMat(src1, useRoi), loadMat(src2, useRoi), normCode);
 | |
| 
 | |
|     double val_gold = cv::norm(src1, src2, normCode);
 | |
| 
 | |
|     EXPECT_NEAR(val_gold, val, 0.0);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(NormDiff, Async)
 | |
| {
 | |
|     cv::Mat src1 = randomMat(size, CV_8UC1);
 | |
|     cv::Mat src2 = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::calcNormDiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, normCode, stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     double val;
 | |
|     const cv::Mat val_mat(1, 1, CV_64FC1, &val);
 | |
|     dst.createMatHeader().convertTo(val_mat, CV_64F);
 | |
| 
 | |
|     double val_gold = cv::norm(src1, src2, normCode);
 | |
| 
 | |
|     EXPECT_NEAR(val_gold, val, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, NormDiff, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| // Sum
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     template <typename T>
 | |
|     cv::Scalar absSumImpl(const cv::Mat& src)
 | |
|     {
 | |
|         const int cn = src.channels();
 | |
| 
 | |
|         cv::Scalar sum = cv::Scalar::all(0);
 | |
| 
 | |
|         for (int y = 0; y < src.rows; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < src.cols; ++x)
 | |
|             {
 | |
|                 for (int c = 0; c < cn; ++c)
 | |
|                     sum[c] += std::abs(src.at<T>(y, x * cn + c));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return sum;
 | |
|     }
 | |
| 
 | |
|     cv::Scalar absSumGold(const cv::Mat& src)
 | |
|     {
 | |
|         typedef cv::Scalar (*func_t)(const cv::Mat& src);
 | |
| 
 | |
|         static const func_t funcs[] =
 | |
|         {
 | |
|             absSumImpl<uchar>,
 | |
|             absSumImpl<schar>,
 | |
|             absSumImpl<ushort>,
 | |
|             absSumImpl<short>,
 | |
|             absSumImpl<int>,
 | |
|             absSumImpl<float>,
 | |
|             absSumImpl<double>
 | |
|         };
 | |
| 
 | |
|         return funcs[src.depth()](src);
 | |
|     }
 | |
| 
 | |
|     template <typename T>
 | |
|     cv::Scalar sqrSumImpl(const cv::Mat& src)
 | |
|     {
 | |
|         const int cn = src.channels();
 | |
| 
 | |
|         cv::Scalar sum = cv::Scalar::all(0);
 | |
| 
 | |
|         for (int y = 0; y < src.rows; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < src.cols; ++x)
 | |
|             {
 | |
|                 for (int c = 0; c < cn; ++c)
 | |
|                 {
 | |
|                     const T val = src.at<T>(y, x * cn + c);
 | |
|                     sum[c] += val * val;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return sum;
 | |
|     }
 | |
| 
 | |
|     cv::Scalar sqrSumGold(const cv::Mat& src)
 | |
|     {
 | |
|         typedef cv::Scalar (*func_t)(const cv::Mat& src);
 | |
| 
 | |
|         static const func_t funcs[] =
 | |
|         {
 | |
|             sqrSumImpl<uchar>,
 | |
|             sqrSumImpl<schar>,
 | |
|             sqrSumImpl<ushort>,
 | |
|             sqrSumImpl<short>,
 | |
|             sqrSumImpl<int>,
 | |
|             sqrSumImpl<float>,
 | |
|             sqrSumImpl<double>
 | |
|         };
 | |
| 
 | |
|         return funcs[src.depth()](src);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(Sum, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int type;
 | |
|     bool useRoi;
 | |
| 
 | |
|     cv::Mat src;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         src = randomMat(size, type, -128.0, 128.0);
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Sum, Simple)
 | |
| {
 | |
|     cv::Scalar val = cv::cuda::sum(loadMat(src, useRoi));
 | |
| 
 | |
|     cv::Scalar val_gold = cv::sum(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Sum, Simple_Async)
 | |
| {
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::calcSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     cv::Scalar val;
 | |
|     cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
 | |
|     dst.createMatHeader().convertTo(val_mat, CV_64F);
 | |
| 
 | |
|     cv::Scalar val_gold = cv::sum(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Sum, Abs)
 | |
| {
 | |
|     cv::Scalar val = cv::cuda::absSum(loadMat(src, useRoi));
 | |
| 
 | |
|     cv::Scalar val_gold = absSumGold(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Sum, Abs_Async)
 | |
| {
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::calcAbsSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     cv::Scalar val;
 | |
|     cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
 | |
|     dst.createMatHeader().convertTo(val_mat, CV_64F);
 | |
| 
 | |
|     cv::Scalar val_gold = absSumGold(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Sum, Sqr)
 | |
| {
 | |
|     cv::Scalar val = cv::cuda::sqrSum(loadMat(src, useRoi));
 | |
| 
 | |
|     cv::Scalar val_gold = sqrSumGold(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Sum, Sqr_Async)
 | |
| {
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::calcSqrSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     cv::Scalar val;
 | |
|     cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
 | |
|     dst.createMatHeader().convertTo(val_mat, CV_64F);
 | |
| 
 | |
|     cv::Scalar val_gold = sqrSumGold(src);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Sum, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     TYPES(CV_8U, CV_64F, 1, 4),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MinMax
 | |
| 
 | |
| PARAM_TEST_CASE(MinMax, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(MinMax, WithoutMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::cuda::minMax(loadMat(src), &minVal, &maxVal);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal);
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMax, Async)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::findMinMax(loadMat(src, useRoi), dst, cv::noArray(), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     double vals[2];
 | |
|     const cv::Mat vals_mat(1, 2, CV_64FC1, &vals[0]);
 | |
|     dst.createMatHeader().convertTo(vals_mat, CV_64F);
 | |
| 
 | |
|     double minVal_gold, maxVal_gold;
 | |
|     minMaxLocGold(src, &minVal_gold, &maxVal_gold);
 | |
| 
 | |
|     EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
 | |
|     EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMax, WithMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
|     cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::cuda::minMax(loadMat(src), &minVal, &maxVal, loadMat(mask));
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMax, NullPtr)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::cuda::minMax(loadMat(src), &minVal, 0);
 | |
|             cv::cuda::minMax(loadMat(src), 0, &maxVal);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::cuda::minMax(loadMat(src, useRoi), &minVal, 0);
 | |
|         cv::cuda::minMax(loadMat(src, useRoi), 0, &maxVal);
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMax, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     ALL_DEPTH,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MinMaxLoc
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     template <typename T>
 | |
|     void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
 | |
|     {
 | |
|         EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
 | |
|     }
 | |
| 
 | |
|     void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
 | |
|     {
 | |
|         typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
 | |
| 
 | |
|         static const func_t funcs[] =
 | |
|         {
 | |
|             expectEqualImpl<uchar>,
 | |
|             expectEqualImpl<schar>,
 | |
|             expectEqualImpl<ushort>,
 | |
|             expectEqualImpl<short>,
 | |
|             expectEqualImpl<int>,
 | |
|             expectEqualImpl<float>,
 | |
|             expectEqualImpl<double>
 | |
|         };
 | |
| 
 | |
|         funcs[src.depth()](src, loc_gold, loc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(MinMaxLoc, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(MinMaxLoc, WithoutMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::Point minLoc, maxLoc;
 | |
|             cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::Point minLoc, maxLoc;
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         cv::Point minLoc_gold, maxLoc_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
| 
 | |
|         expectEqual(src, minLoc_gold, minLoc);
 | |
|         expectEqual(src, maxLoc_gold, maxLoc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMaxLoc, Async)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem minMaxVals, locVals;
 | |
|     cv::cuda::findMinMaxLoc(loadMat(src, useRoi), minMaxVals, locVals, cv::noArray(), stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     double vals[2];
 | |
|     const cv::Mat vals_mat(2, 1, CV_64FC1, &vals[0]);
 | |
|     minMaxVals.createMatHeader().convertTo(vals_mat, CV_64F);
 | |
| 
 | |
|     int locs[2];
 | |
|     const cv::Mat locs_mat(2, 1, CV_32SC1, &locs[0]);
 | |
|     locVals.createMatHeader().copyTo(locs_mat);
 | |
| 
 | |
|     cv::Point locs2D[] = {
 | |
|         cv::Point(locs[0] % src.cols, locs[0] / src.cols),
 | |
|         cv::Point(locs[1] % src.cols, locs[1] / src.cols),
 | |
|     };
 | |
| 
 | |
|     double minVal_gold, maxVal_gold;
 | |
|     cv::Point minLoc_gold, maxLoc_gold;
 | |
|     minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
 | |
| 
 | |
|     EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
 | |
|     EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
 | |
| 
 | |
|     expectEqual(src, minLoc_gold, locs2D[0]);
 | |
|     expectEqual(src, maxLoc_gold, locs2D[1]);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMaxLoc, WithMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
|     cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::Point minLoc, maxLoc;
 | |
|             cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask));
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::Point minLoc, maxLoc;
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         cv::Point minLoc_gold, maxLoc_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
| 
 | |
|         expectEqual(src, minLoc_gold, minLoc);
 | |
|         expectEqual(src, maxLoc_gold, maxLoc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MinMaxLoc, NullPtr)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, depth);
 | |
| 
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             double minVal, maxVal;
 | |
|             cv::Point minLoc, maxLoc;
 | |
|             cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
 | |
|             cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
 | |
|             cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
 | |
|             cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double minVal, maxVal;
 | |
|         cv::Point minLoc, maxLoc;
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
 | |
|         cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
 | |
| 
 | |
|         double minVal_gold, maxVal_gold;
 | |
|         cv::Point minLoc_gold, maxLoc_gold;
 | |
|         minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
 | |
| 
 | |
|         EXPECT_DOUBLE_EQ(minVal_gold, minVal);
 | |
|         EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
 | |
| 
 | |
|         expectEqual(src, minLoc_gold, minLoc);
 | |
|         expectEqual(src, maxLoc_gold, maxLoc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMaxLoc, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     ALL_DEPTH,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // CountNonZero
 | |
| 
 | |
| PARAM_TEST_CASE(CountNonZero, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     bool useRoi;
 | |
| 
 | |
|     cv::Mat src;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::Mat srcBase = randomMat(size, CV_8U, 0.0, 1.5);
 | |
|         srcBase.convertTo(src, depth);
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(CountNonZero, Accuracy)
 | |
| {
 | |
|     if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             cv::cuda::countNonZero(loadMat(src));
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         int val = cv::cuda::countNonZero(loadMat(src, useRoi));
 | |
| 
 | |
|         int val_gold = cv::countNonZero(src);
 | |
| 
 | |
|         ASSERT_EQ(val_gold, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(CountNonZero, Async)
 | |
| {
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::countNonZero(loadMat(src, useRoi), dst, stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     int val;
 | |
|     const cv::Mat val_mat(1, 1, CV_32SC1, &val);
 | |
|     dst.createMatHeader().copyTo(val_mat);
 | |
| 
 | |
|     int val_gold = cv::countNonZero(src);
 | |
| 
 | |
|     ASSERT_EQ(val_gold, val);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, CountNonZero, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     ALL_DEPTH,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| // Reduce
 | |
| 
 | |
| CV_ENUM(ReduceCode, cv::REDUCE_SUM, cv::REDUCE_AVG, cv::REDUCE_MAX, cv::REDUCE_MIN)
 | |
| #define ALL_REDUCE_CODES testing::Values(ReduceCode(cv::REDUCE_SUM), ReduceCode(cv::REDUCE_AVG), ReduceCode(cv::REDUCE_MAX), ReduceCode(cv::REDUCE_MIN))
 | |
| 
 | |
| PARAM_TEST_CASE(Reduce, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     int channels;
 | |
|     int reduceOp;
 | |
|     bool useRoi;
 | |
| 
 | |
|     int type;
 | |
|     int dst_depth;
 | |
|     int dst_type;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         channels = GET_PARAM(3);
 | |
|         reduceOp = GET_PARAM(4);
 | |
|         useRoi = GET_PARAM(5);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|         if (reduceOp == cv::REDUCE_MAX || reduceOp == cv::REDUCE_MIN)
 | |
|             dst_depth = depth;
 | |
|         else if (reduceOp == cv::REDUCE_SUM)
 | |
|             dst_depth = depth == CV_8U ? CV_32S : depth < CV_64F ? CV_32F : depth;
 | |
|         else
 | |
|             dst_depth = depth < CV_32F ? CV_32F : depth;
 | |
| 
 | |
|         dst_type = CV_MAKE_TYPE(dst_depth, channels);
 | |
|     }
 | |
| 
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Reduce, Rows)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(cv::Size(src.cols, 1), dst_type, useRoi);
 | |
|     cv::cuda::reduce(loadMat(src, useRoi), dst, 0, reduceOp, dst_depth);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::reduce(src, dst_gold, 0, reduceOp, dst_depth);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Reduce, Cols)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(cv::Size(src.rows, 1), dst_type, useRoi);
 | |
|     cv::cuda::reduce(loadMat(src, useRoi), dst, 1, reduceOp, dst_depth);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::reduce(src, dst_gold, 1, reduceOp, dst_depth);
 | |
|     dst_gold.cols = dst_gold.rows;
 | |
|     dst_gold.rows = 1;
 | |
|     dst_gold.step = dst_gold.cols * dst_gold.elemSize();
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Reduce, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatDepth(CV_8U),
 | |
|                     MatDepth(CV_16U),
 | |
|                     MatDepth(CV_16S),
 | |
|                     MatDepth(CV_32F),
 | |
|                     MatDepth(CV_64F)),
 | |
|     ALL_CHANNELS,
 | |
|     ALL_REDUCE_CODES,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| // Normalize
 | |
| 
 | |
| PARAM_TEST_CASE(Normalize, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int type;
 | |
|     int norm_type;
 | |
|     bool useRoi;
 | |
| 
 | |
|     double alpha;
 | |
|     double beta;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         norm_type = GET_PARAM(3);
 | |
|         useRoi = GET_PARAM(4);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         alpha = 1;
 | |
|         beta = 0;
 | |
|     }
 | |
| 
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Normalize, WithOutMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(size, type, useRoi);
 | |
|     cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, type);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::normalize(src, dst_gold, alpha, beta, norm_type, type);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(Normalize, WithMask)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
|     cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(size, type, useRoi);
 | |
|     dst.setTo(cv::Scalar::all(0));
 | |
|     cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, type, loadMat(mask, useRoi));
 | |
| 
 | |
|     cv::Mat dst_gold(size, type);
 | |
|     dst_gold.setTo(cv::Scalar::all(0));
 | |
|     cv::normalize(src, dst_gold, alpha, beta, norm_type, type, mask);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Normalize, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     ALL_DEPTH,
 | |
|     testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF), NormCode(cv::NORM_MINMAX)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MeanStdDev
 | |
| 
 | |
| PARAM_TEST_CASE(MeanStdDev, cv::cuda::DeviceInfo, cv::Size, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         useRoi = GET_PARAM(2);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(MeanStdDev, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     if (!supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_13))
 | |
|     {
 | |
|         try
 | |
|         {
 | |
|             cv::Scalar mean;
 | |
|             cv::Scalar stddev;
 | |
|             cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
 | |
|         }
 | |
|         catch (const cv::Exception& e)
 | |
|         {
 | |
|             ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Scalar mean;
 | |
|         cv::Scalar stddev;
 | |
|         cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
 | |
| 
 | |
|         cv::Scalar mean_gold;
 | |
|         cv::Scalar stddev_gold;
 | |
|         cv::meanStdDev(src, mean_gold, stddev_gold);
 | |
| 
 | |
|         EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5);
 | |
|         EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(MeanStdDev, Async)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::cuda::Stream stream;
 | |
| 
 | |
|     cv::cuda::HostMem dst;
 | |
|     cv::cuda::meanStdDev(loadMat(src, useRoi), dst, stream);
 | |
| 
 | |
|     stream.waitForCompletion();
 | |
| 
 | |
|     double vals[2];
 | |
|     dst.createMatHeader().copyTo(cv::Mat(1, 2, CV_64FC1, &vals[0]));
 | |
| 
 | |
|     cv::Scalar mean_gold;
 | |
|     cv::Scalar stddev_gold;
 | |
|     cv::meanStdDev(src, mean_gold, stddev_gold);
 | |
| 
 | |
|     EXPECT_SCALAR_NEAR(mean_gold, cv::Scalar(vals[0]), 1e-5);
 | |
|     EXPECT_SCALAR_NEAR(stddev_gold, cv::Scalar(vals[1]), 1e-5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MeanStdDev, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // Integral
 | |
| 
 | |
| PARAM_TEST_CASE(Integral, cv::cuda::DeviceInfo, cv::Size, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         useRoi = GET_PARAM(2);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Integral, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
 | |
|     cv::cuda::integral(loadMat(src, useRoi), dst);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::integral(src, dst_gold, CV_32S);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Integral, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(768, 1066)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // IntegralSqr
 | |
| 
 | |
| PARAM_TEST_CASE(IntegralSqr, cv::cuda::DeviceInfo, cv::Size, UseRoi)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         useRoi = GET_PARAM(2);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(IntegralSqr, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, CV_8UC1);
 | |
| 
 | |
|     cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_64FC1, useRoi);
 | |
|     cv::cuda::sqrIntegral(loadMat(src, useRoi), dst);
 | |
| 
 | |
|     cv::Mat dst_gold, temp;
 | |
|     cv::integral(src, temp, dst_gold);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_Arithm, IntegralSqr, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| #endif // HAVE_CUDA
 |