be63ce723f
updated links in cheatsheet renamed directory for Mat tutorial changed links from willow docs to opencv.itseez.com, from Trac to current Redmine
183 lines
5.8 KiB
ReStructuredText
183 lines
5.8 KiB
ReStructuredText
.. _hough_circle:
|
|
|
|
Hough Circle Transform
|
|
***********************
|
|
|
|
Goal
|
|
=====
|
|
In this tutorial you will learn how to:
|
|
|
|
* Use the OpenCV function :hough_circles:`HoughCircles <>` to detect circles in an image.
|
|
|
|
Theory
|
|
=======
|
|
|
|
Hough Circle Transform
|
|
------------------------
|
|
|
|
* The Hough Circle Transform works in a *roughly* analogous way to the Hough Line Transform explained in the previous tutorial.
|
|
* In the line detection case, a line was defined by two parameters :math:`(r, \theta)`. In the circle case, we need three parameters to define a circle:
|
|
|
|
.. math::
|
|
|
|
C : ( x_{center}, y_{center}, r )
|
|
|
|
where :math:`(x_{center}, y_{center})` define the center position (gree point) and :math:`r` is the radius, which allows us to completely define a circle, as it can be seen below:
|
|
|
|
.. image:: images/Hough_Circle_Tutorial_Theory_0.jpg
|
|
:alt: Result of detecting circles with Hough Transform
|
|
:align: center
|
|
|
|
* For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Transform: *The Hough gradient method*. For more details, please check the book *Learning OpenCV* or your favorite Computer Vision bibliography
|
|
|
|
Code
|
|
======
|
|
|
|
#. **What does this program do?**
|
|
|
|
* Loads an image and blur it to reduce the noise
|
|
* Applies the *Hough Circle Transform* to the blurred image .
|
|
* Display the detected circle in a window.
|
|
|
|
.. |TutorialHoughCirclesSimpleDownload| replace:: here
|
|
.. _TutorialHoughCirclesSimpleDownload: http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
|
|
.. |TutorialHoughCirclesFancyDownload| replace:: here
|
|
.. _TutorialHoughCirclesFancyDownload: http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp
|
|
|
|
#. The sample code that we will explain can be downloaded from |TutorialHoughCirclesSimpleDownload|_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found |TutorialHoughCirclesFancyDownload|_.
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
|
|
using namespace cv;
|
|
|
|
/** @function main */
|
|
int main(int argc, char** argv)
|
|
{
|
|
Mat src, src_gray;
|
|
|
|
/// Read the image
|
|
src = imread( argv[1], 1 );
|
|
|
|
if( !src.data )
|
|
{ return -1; }
|
|
|
|
/// Convert it to gray
|
|
cvtColor( src, src_gray, CV_BGR2GRAY );
|
|
|
|
/// Reduce the noise so we avoid false circle detection
|
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
|
|
|
vector<Vec3f> circles;
|
|
|
|
/// Apply the Hough Transform to find the circles
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
|
|
|
/// Draw the circles detected
|
|
for( size_t i = 0; i < circles.size(); i++ )
|
|
{
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
|
int radius = cvRound(circles[i][2]);
|
|
// circle center
|
|
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
|
// circle outline
|
|
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
|
}
|
|
|
|
/// Show your results
|
|
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
|
imshow( "Hough Circle Transform Demo", src );
|
|
|
|
waitKey(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
Explanation
|
|
============
|
|
|
|
|
|
#. Load an image
|
|
|
|
.. code-block:: cpp
|
|
|
|
src = imread( argv[1], 1 );
|
|
|
|
if( !src.data )
|
|
{ return -1; }
|
|
|
|
#. Convert it to grayscale:
|
|
|
|
.. code-block:: cpp
|
|
|
|
cvtColor( src, src_gray, CV_BGR2GRAY );
|
|
|
|
#. Apply a Gaussian blur to reduce noise and avoid false circle detection:
|
|
|
|
.. code-block:: cpp
|
|
|
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
|
|
|
#. Proceed to apply Hough Circle Transform:
|
|
|
|
.. code-block:: cpp
|
|
|
|
vector<Vec3f> circles;
|
|
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
|
|
|
with the arguments:
|
|
|
|
* *src_gray*: Input image (grayscale)
|
|
* *circles*: A vector that stores sets of 3 values: :math:`x_{c}, y_{c}, r` for each detected circle.
|
|
* *CV_HOUGH_GRADIENT*: Define the detection method. Currently this is the only one available in OpenCV
|
|
* *dp = 1*: The inverse ratio of resolution
|
|
* *min_dist = src_gray.rows/8*: Minimum distance between detected centers
|
|
* *param_1 = 200*: Upper threshold for the internal Canny edge detector
|
|
* *param_2* = 100*: Threshold for center detection.
|
|
* *min_radius = 0*: Minimum radio to be detected. If unknown, put zero as default.
|
|
* *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default
|
|
|
|
#. Draw the detected circles:
|
|
|
|
.. code-block:: cpp
|
|
|
|
for( size_t i = 0; i < circles.size(); i++ )
|
|
{
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
|
int radius = cvRound(circles[i][2]);
|
|
// circle center
|
|
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
|
// circle outline
|
|
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
|
}
|
|
|
|
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
|
|
|
|
#. Display the detected circle(s):
|
|
|
|
.. code-block:: cpp
|
|
|
|
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
|
imshow( "Hough Circle Transform Demo", src );
|
|
|
|
#. Wait for the user to exit the program
|
|
|
|
.. code-block:: cpp
|
|
|
|
waitKey(0);
|
|
|
|
|
|
Result
|
|
=======
|
|
|
|
The result of running the code above with a test image is shown below:
|
|
|
|
.. image:: images/Hough_Circle_Tutorial_Result.jpg
|
|
:alt: Result of detecting circles with Hough Transform
|
|
:align: center
|