2058 lines
64 KiB
C++
2058 lines
64 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
/* initializes 8-element array for fast access to 3x3 neighborhood of a pixel */
|
|
#define CV_INIT_3X3_DELTAS( deltas, step, nch ) \
|
|
((deltas)[0] = (nch), (deltas)[1] = -(step) + (nch), \
|
|
(deltas)[2] = -(step), (deltas)[3] = -(step) - (nch), \
|
|
(deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \
|
|
(deltas)[6] = (step), (deltas)[7] = (step) + (nch))
|
|
|
|
static const CvPoint icvCodeDeltas[8] =
|
|
{ {1, 0}, {1, -1}, {0, -1}, {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1} };
|
|
|
|
CV_IMPL void
|
|
cvStartReadChainPoints( CvChain * chain, CvChainPtReader * reader )
|
|
{
|
|
int i;
|
|
|
|
if( !chain || !reader )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( chain->elem_size != 1 || chain->header_size < (int)sizeof(CvChain))
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
cvStartReadSeq( (CvSeq *) chain, (CvSeqReader *) reader, 0 );
|
|
|
|
reader->pt = chain->origin;
|
|
for( i = 0; i < 8; i++ )
|
|
{
|
|
reader->deltas[i][0] = (schar) icvCodeDeltas[i].x;
|
|
reader->deltas[i][1] = (schar) icvCodeDeltas[i].y;
|
|
}
|
|
}
|
|
|
|
|
|
/* retrieves next point of the chain curve and updates reader */
|
|
CV_IMPL CvPoint
|
|
cvReadChainPoint( CvChainPtReader * reader )
|
|
{
|
|
schar *ptr;
|
|
int code;
|
|
CvPoint pt = { 0, 0 };
|
|
|
|
if( !reader )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
pt = reader->pt;
|
|
|
|
ptr = reader->ptr;
|
|
if( ptr )
|
|
{
|
|
code = *ptr++;
|
|
|
|
if( ptr >= reader->block_max )
|
|
{
|
|
cvChangeSeqBlock( (CvSeqReader *) reader, 1 );
|
|
ptr = reader->ptr;
|
|
}
|
|
|
|
reader->ptr = ptr;
|
|
reader->code = (schar)code;
|
|
assert( (code & ~7) == 0 );
|
|
reader->pt.x = pt.x + icvCodeDeltas[code].x;
|
|
reader->pt.y = pt.y + icvCodeDeltas[code].y;
|
|
}
|
|
|
|
return pt;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Raster->Chain Tree (Suzuki algorithms) *
|
|
\****************************************************************************************/
|
|
|
|
typedef struct _CvContourInfo
|
|
{
|
|
int flags;
|
|
struct _CvContourInfo *next; /* next contour with the same mark value */
|
|
struct _CvContourInfo *parent; /* information about parent contour */
|
|
CvSeq *contour; /* corresponding contour (may be 0, if rejected) */
|
|
CvRect rect; /* bounding rectangle */
|
|
CvPoint origin; /* origin point (where the contour was traced from) */
|
|
int is_hole; /* hole flag */
|
|
}
|
|
_CvContourInfo;
|
|
|
|
|
|
/*
|
|
Structure that is used for sequental retrieving contours from the image.
|
|
It supports both hierarchical and plane variants of Suzuki algorithm.
|
|
*/
|
|
typedef struct _CvContourScanner
|
|
{
|
|
CvMemStorage *storage1; /* contains fetched contours */
|
|
CvMemStorage *storage2; /* contains approximated contours
|
|
(!=storage1 if approx_method2 != approx_method1) */
|
|
CvMemStorage *cinfo_storage; /* contains _CvContourInfo nodes */
|
|
CvSet *cinfo_set; /* set of _CvContourInfo nodes */
|
|
CvMemStoragePos initial_pos; /* starting storage pos */
|
|
CvMemStoragePos backup_pos; /* beginning of the latest approx. contour */
|
|
CvMemStoragePos backup_pos2; /* ending of the latest approx. contour */
|
|
schar *img0; /* image origin */
|
|
schar *img; /* current image row */
|
|
int img_step; /* image step */
|
|
CvSize img_size; /* ROI size */
|
|
CvPoint offset; /* ROI offset: coordinates, added to each contour point */
|
|
CvPoint pt; /* current scanner position */
|
|
CvPoint lnbd; /* position of the last met contour */
|
|
int nbd; /* current mark val */
|
|
_CvContourInfo *l_cinfo; /* information about latest approx. contour */
|
|
_CvContourInfo cinfo_temp; /* temporary var which is used in simple modes */
|
|
_CvContourInfo frame_info; /* information about frame */
|
|
CvSeq frame; /* frame itself */
|
|
int approx_method1; /* approx method when tracing */
|
|
int approx_method2; /* final approx method */
|
|
int mode; /* contour scanning mode:
|
|
0 - external only
|
|
1 - all the contours w/o any hierarchy
|
|
2 - connected components (i.e. two-level structure -
|
|
external contours and holes),
|
|
3 - full hierarchy;
|
|
4 - connected components of a multi-level image
|
|
*/
|
|
int subst_flag;
|
|
int seq_type1; /* type of fetched contours */
|
|
int header_size1; /* hdr size of fetched contours */
|
|
int elem_size1; /* elem size of fetched contours */
|
|
int seq_type2; /* */
|
|
int header_size2; /* the same for approx. contours */
|
|
int elem_size2; /* */
|
|
_CvContourInfo *cinfo_table[128];
|
|
}
|
|
_CvContourScanner;
|
|
|
|
#define _CV_FIND_CONTOURS_FLAGS_EXTERNAL_ONLY 1
|
|
#define _CV_FIND_CONTOURS_FLAGS_HIERARCHIC 2
|
|
|
|
/*
|
|
Initializes scanner structure.
|
|
Prepare image for scanning ( clear borders and convert all pixels to 0-1.
|
|
*/
|
|
CV_IMPL CvContourScanner
|
|
cvStartFindContours( void* _img, CvMemStorage* storage,
|
|
int header_size, int mode,
|
|
int method, CvPoint offset )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvMat stub, *mat = cvGetMat( _img, &stub );
|
|
|
|
if( CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == CV_RETR_CCOMP )
|
|
mode = CV_RETR_FLOODFILL;
|
|
|
|
if( !((CV_IS_MASK_ARR( mat ) && mode < CV_RETR_FLOODFILL) ||
|
|
(CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == CV_RETR_FLOODFILL)) )
|
|
CV_Error( CV_StsUnsupportedFormat, "[Start]FindContours support only 8uC1 and 32sC1 images" );
|
|
|
|
CvSize size = cvSize( mat->width, mat->height );
|
|
int step = mat->step;
|
|
uchar* img = (uchar*)(mat->data.ptr);
|
|
|
|
if( method < 0 || method > CV_CHAIN_APPROX_TC89_KCOS )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
if( header_size < (int) (method == CV_CHAIN_CODE ? sizeof( CvChain ) : sizeof( CvContour )))
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
CvContourScanner scanner = (CvContourScanner)cvAlloc( sizeof( *scanner ));
|
|
memset( scanner, 0, sizeof(*scanner) );
|
|
|
|
scanner->storage1 = scanner->storage2 = storage;
|
|
scanner->img0 = (schar *) img;
|
|
scanner->img = (schar *) (img + step);
|
|
scanner->img_step = step;
|
|
scanner->img_size.width = size.width - 1; /* exclude rightest column */
|
|
scanner->img_size.height = size.height - 1; /* exclude bottomost row */
|
|
scanner->mode = mode;
|
|
scanner->offset = offset;
|
|
scanner->pt.x = scanner->pt.y = 1;
|
|
scanner->lnbd.x = 0;
|
|
scanner->lnbd.y = 1;
|
|
scanner->nbd = 2;
|
|
scanner->mode = (int) mode;
|
|
scanner->frame_info.contour = &(scanner->frame);
|
|
scanner->frame_info.is_hole = 1;
|
|
scanner->frame_info.next = 0;
|
|
scanner->frame_info.parent = 0;
|
|
scanner->frame_info.rect = cvRect( 0, 0, size.width, size.height );
|
|
scanner->l_cinfo = 0;
|
|
scanner->subst_flag = 0;
|
|
|
|
scanner->frame.flags = CV_SEQ_FLAG_HOLE;
|
|
|
|
scanner->approx_method2 = scanner->approx_method1 = method;
|
|
|
|
if( method == CV_CHAIN_APPROX_TC89_L1 || method == CV_CHAIN_APPROX_TC89_KCOS )
|
|
scanner->approx_method1 = CV_CHAIN_CODE;
|
|
|
|
if( scanner->approx_method1 == CV_CHAIN_CODE )
|
|
{
|
|
scanner->seq_type1 = CV_SEQ_CHAIN_CONTOUR;
|
|
scanner->header_size1 = scanner->approx_method1 == scanner->approx_method2 ?
|
|
header_size : sizeof( CvChain );
|
|
scanner->elem_size1 = sizeof( char );
|
|
}
|
|
else
|
|
{
|
|
scanner->seq_type1 = CV_SEQ_POLYGON;
|
|
scanner->header_size1 = scanner->approx_method1 == scanner->approx_method2 ?
|
|
header_size : sizeof( CvContour );
|
|
scanner->elem_size1 = sizeof( CvPoint );
|
|
}
|
|
|
|
scanner->header_size2 = header_size;
|
|
|
|
if( scanner->approx_method2 == CV_CHAIN_CODE )
|
|
{
|
|
scanner->seq_type2 = scanner->seq_type1;
|
|
scanner->elem_size2 = scanner->elem_size1;
|
|
}
|
|
else
|
|
{
|
|
scanner->seq_type2 = CV_SEQ_POLYGON;
|
|
scanner->elem_size2 = sizeof( CvPoint );
|
|
}
|
|
|
|
scanner->seq_type1 = scanner->approx_method1 == CV_CHAIN_CODE ?
|
|
CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;
|
|
|
|
scanner->seq_type2 = scanner->approx_method2 == CV_CHAIN_CODE ?
|
|
CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;
|
|
|
|
cvSaveMemStoragePos( storage, &(scanner->initial_pos) );
|
|
|
|
if( method > CV_CHAIN_APPROX_SIMPLE )
|
|
{
|
|
scanner->storage1 = cvCreateChildMemStorage( scanner->storage2 );
|
|
}
|
|
|
|
if( mode > CV_RETR_LIST )
|
|
{
|
|
scanner->cinfo_storage = cvCreateChildMemStorage( scanner->storage2 );
|
|
scanner->cinfo_set = cvCreateSet( 0, sizeof( CvSet ), sizeof( _CvContourInfo ),
|
|
scanner->cinfo_storage );
|
|
}
|
|
|
|
/* make zero borders */
|
|
int esz = CV_ELEM_SIZE(mat->type);
|
|
memset( img, 0, size.width*esz );
|
|
memset( img + step * (size.height - 1), 0, size.width*esz );
|
|
|
|
img += step;
|
|
for( int y = 1; y < size.height - 1; y++, img += step )
|
|
{
|
|
for( int k = 0; k < esz; k++ )
|
|
img[k] = img[(size.width - 1)*esz + k] = (schar)0;
|
|
}
|
|
|
|
/* converts all pixels to 0 or 1 */
|
|
if( CV_MAT_TYPE(mat->type) != CV_32S )
|
|
cvThreshold( mat, mat, 0, 1, CV_THRESH_BINARY );
|
|
|
|
return scanner;
|
|
}
|
|
|
|
/*
|
|
Final stage of contour processing.
|
|
Three variants possible:
|
|
1. Contour, which was retrieved using border following, is added to
|
|
the contour tree. It is the case when the icvSubstituteContour function
|
|
was not called after retrieving the contour.
|
|
|
|
2. New contour, assigned by icvSubstituteContour function, is added to the
|
|
tree. The retrieved contour itself is removed from the storage.
|
|
Here two cases are possible:
|
|
2a. If one deals with plane variant of algorithm
|
|
(hierarchical strucutre is not reconstructed),
|
|
the contour is removed completely.
|
|
2b. In hierarchical case, the header of the contour is not removed.
|
|
It's marked as "link to contour" and h_next pointer of it is set to
|
|
new, substituting contour.
|
|
|
|
3. The similar to 2, but when NULL pointer was assigned by
|
|
icvSubstituteContour function. In this case, the function removes
|
|
retrieved contour completely if plane case and
|
|
leaves header if hierarchical (but doesn't mark header as "link").
|
|
------------------------------------------------------------------------
|
|
The 1st variant can be used to retrieve and store all the contours from the image
|
|
(with optional convertion from chains to contours using some approximation from
|
|
restriced set of methods). Some characteristics of contour can be computed in the
|
|
same pass.
|
|
|
|
The usage scheme can look like:
|
|
|
|
icvContourScanner scanner;
|
|
CvMemStorage* contour_storage;
|
|
CvSeq* first_contour;
|
|
CvStatus result;
|
|
|
|
...
|
|
|
|
icvCreateMemStorage( &contour_storage, block_size/0 );
|
|
|
|
...
|
|
|
|
cvStartFindContours
|
|
( img, contour_storage,
|
|
header_size, approx_method,
|
|
[external_only,]
|
|
&scanner );
|
|
|
|
for(;;)
|
|
{
|
|
[CvSeq* contour;]
|
|
result = icvFindNextContour( &scanner, &contour/0 );
|
|
|
|
if( result != CV_OK ) break;
|
|
|
|
// calculate some characteristics
|
|
...
|
|
}
|
|
|
|
if( result < 0 ) goto error_processing;
|
|
|
|
cvEndFindContours( &scanner, &first_contour );
|
|
...
|
|
|
|
-----------------------------------------------------------------
|
|
|
|
Second variant is more complex and can be used when someone wants store not
|
|
the retrieved contours but transformed ones. (e.g. approximated with some
|
|
non-default algorithm ).
|
|
|
|
The scheme can be the as following:
|
|
|
|
icvContourScanner scanner;
|
|
CvMemStorage* contour_storage;
|
|
CvMemStorage* temp_storage;
|
|
CvSeq* first_contour;
|
|
CvStatus result;
|
|
|
|
...
|
|
|
|
icvCreateMemStorage( &contour_storage, block_size/0 );
|
|
icvCreateMemStorage( &temp_storage, block_size/0 );
|
|
|
|
...
|
|
|
|
icvStartFindContours8uC1R
|
|
( <img_params>, temp_storage,
|
|
header_size, approx_method,
|
|
[retrival_mode],
|
|
&scanner );
|
|
|
|
for(;;)
|
|
{
|
|
CvSeq* temp_contour;
|
|
CvSeq* new_contour;
|
|
result = icvFindNextContour( scanner, &temp_contour );
|
|
|
|
if( result != CV_OK ) break;
|
|
|
|
<approximation_function>( temp_contour, contour_storage,
|
|
&new_contour, <parameters...> );
|
|
|
|
icvSubstituteContour( scanner, new_contour );
|
|
...
|
|
}
|
|
|
|
if( result < 0 ) goto error_processing;
|
|
|
|
cvEndFindContours( &scanner, &first_contour );
|
|
...
|
|
|
|
----------------------------------------------------------------------------
|
|
Third method to retrieve contours may be applied if contours are irrelevant
|
|
themselves but some characteristics of them are used only.
|
|
The usage is similar to second except slightly different internal loop
|
|
|
|
for(;;)
|
|
{
|
|
CvSeq* temp_contour;
|
|
result = icvFindNextContour( &scanner, &temp_contour );
|
|
|
|
if( result != CV_OK ) break;
|
|
|
|
// calculate some characteristics of temp_contour
|
|
|
|
icvSubstituteContour( scanner, 0 );
|
|
...
|
|
}
|
|
|
|
new_storage variable is not needed here.
|
|
|
|
Note, that the second and the third methods can interleave. I.e. it is possible to
|
|
retain contours that satisfy with some criteria and reject others.
|
|
In hierarchic case the resulting tree is the part of original tree with
|
|
some nodes absent. But in the resulting tree the contour1 is a child
|
|
(may be indirect) of contour2 iff in the original tree the contour1
|
|
is a child (may be indirect) of contour2.
|
|
*/
|
|
static void
|
|
icvEndProcessContour( CvContourScanner scanner )
|
|
{
|
|
_CvContourInfo *l_cinfo = scanner->l_cinfo;
|
|
|
|
if( l_cinfo )
|
|
{
|
|
if( scanner->subst_flag )
|
|
{
|
|
CvMemStoragePos temp;
|
|
|
|
cvSaveMemStoragePos( scanner->storage2, &temp );
|
|
|
|
if( temp.top == scanner->backup_pos2.top &&
|
|
temp.free_space == scanner->backup_pos2.free_space )
|
|
{
|
|
cvRestoreMemStoragePos( scanner->storage2, &scanner->backup_pos );
|
|
}
|
|
scanner->subst_flag = 0;
|
|
}
|
|
|
|
if( l_cinfo->contour )
|
|
{
|
|
cvInsertNodeIntoTree( l_cinfo->contour, l_cinfo->parent->contour,
|
|
&(scanner->frame) );
|
|
}
|
|
scanner->l_cinfo = 0;
|
|
}
|
|
}
|
|
|
|
/* replaces one contour with another */
|
|
CV_IMPL void
|
|
cvSubstituteContour( CvContourScanner scanner, CvSeq * new_contour )
|
|
{
|
|
_CvContourInfo *l_cinfo;
|
|
|
|
if( !scanner )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
l_cinfo = scanner->l_cinfo;
|
|
if( l_cinfo && l_cinfo->contour && l_cinfo->contour != new_contour )
|
|
{
|
|
l_cinfo->contour = new_contour;
|
|
scanner->subst_flag = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
marks domain border with +/-<constant> and stores the contour into CvSeq.
|
|
method:
|
|
<0 - chain
|
|
==0 - direct
|
|
>0 - simple approximation
|
|
*/
|
|
static void
|
|
icvFetchContour( schar *ptr,
|
|
int step,
|
|
CvPoint pt,
|
|
CvSeq* contour,
|
|
int _method )
|
|
{
|
|
const schar nbd = 2;
|
|
int deltas[16];
|
|
CvSeqWriter writer;
|
|
schar *i0 = ptr, *i1, *i3, *i4 = 0;
|
|
int prev_s = -1, s, s_end;
|
|
int method = _method - 1;
|
|
|
|
assert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
|
|
|
/* initialize local state */
|
|
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
|
memcpy( deltas + 8, deltas, 8 * sizeof( deltas[0] ));
|
|
|
|
/* initialize writer */
|
|
cvStartAppendToSeq( contour, &writer );
|
|
|
|
if( method < 0 )
|
|
((CvChain *) contour)->origin = pt;
|
|
|
|
s_end = s = CV_IS_SEQ_HOLE( contour ) ? 0 : 4;
|
|
|
|
do
|
|
{
|
|
s = (s - 1) & 7;
|
|
i1 = i0 + deltas[s];
|
|
if( *i1 != 0 )
|
|
break;
|
|
}
|
|
while( s != s_end );
|
|
|
|
if( s == s_end ) /* single pixel domain */
|
|
{
|
|
*i0 = (schar) (nbd | -128);
|
|
if( method >= 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
i3 = i0;
|
|
prev_s = s ^ 4;
|
|
|
|
/* follow border */
|
|
for( ;; )
|
|
{
|
|
s_end = s;
|
|
|
|
for( ;; )
|
|
{
|
|
i4 = i3 + deltas[++s];
|
|
if( *i4 != 0 )
|
|
break;
|
|
}
|
|
s &= 7;
|
|
|
|
/* check "right" bound */
|
|
if( (unsigned) (s - 1) < (unsigned) s_end )
|
|
{
|
|
*i3 = (schar) (nbd | -128);
|
|
}
|
|
else if( *i3 == 1 )
|
|
{
|
|
*i3 = nbd;
|
|
}
|
|
|
|
if( method < 0 )
|
|
{
|
|
schar _s = (schar) s;
|
|
|
|
CV_WRITE_SEQ_ELEM( _s, writer );
|
|
}
|
|
else
|
|
{
|
|
if( s != prev_s || method == 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
prev_s = s;
|
|
}
|
|
|
|
pt.x += icvCodeDeltas[s].x;
|
|
pt.y += icvCodeDeltas[s].y;
|
|
|
|
}
|
|
|
|
if( i4 == i0 && i3 == i1 )
|
|
break;
|
|
|
|
i3 = i4;
|
|
s = (s + 4) & 7;
|
|
} /* end of border following loop */
|
|
}
|
|
|
|
cvEndWriteSeq( &writer );
|
|
|
|
if( _method != CV_CHAIN_CODE )
|
|
cvBoundingRect( contour, 1 );
|
|
|
|
assert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
|
writer.seq->total > writer.seq->first->count ||
|
|
(writer.seq->first->prev == writer.seq->first &&
|
|
writer.seq->first->next == writer.seq->first) );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
trace contour until certain point is met.
|
|
returns 1 if met, 0 else.
|
|
*/
|
|
static int
|
|
icvTraceContour( schar *ptr, int step, schar *stop_ptr, int is_hole )
|
|
{
|
|
int deltas[16];
|
|
schar *i0 = ptr, *i1, *i3, *i4;
|
|
int s, s_end;
|
|
|
|
/* initialize local state */
|
|
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
|
memcpy( deltas + 8, deltas, 8 * sizeof( deltas[0] ));
|
|
|
|
assert( (*i0 & -2) != 0 );
|
|
|
|
s_end = s = is_hole ? 0 : 4;
|
|
|
|
do
|
|
{
|
|
s = (s - 1) & 7;
|
|
i1 = i0 + deltas[s];
|
|
if( *i1 != 0 )
|
|
break;
|
|
}
|
|
while( s != s_end );
|
|
|
|
i3 = i0;
|
|
|
|
/* check single pixel domain */
|
|
if( s != s_end )
|
|
{
|
|
/* follow border */
|
|
for( ;; )
|
|
{
|
|
s_end = s;
|
|
|
|
for( ;; )
|
|
{
|
|
i4 = i3 + deltas[++s];
|
|
if( *i4 != 0 )
|
|
break;
|
|
}
|
|
|
|
if( i3 == stop_ptr || (i4 == i0 && i3 == i1) )
|
|
break;
|
|
|
|
i3 = i4;
|
|
s = (s + 4) & 7;
|
|
} /* end of border following loop */
|
|
}
|
|
return i3 == stop_ptr;
|
|
}
|
|
|
|
|
|
static void
|
|
icvFetchContourEx( schar* ptr,
|
|
int step,
|
|
CvPoint pt,
|
|
CvSeq* contour,
|
|
int _method,
|
|
int nbd,
|
|
CvRect* _rect )
|
|
{
|
|
int deltas[16];
|
|
CvSeqWriter writer;
|
|
schar *i0 = ptr, *i1, *i3, *i4;
|
|
CvRect rect;
|
|
int prev_s = -1, s, s_end;
|
|
int method = _method - 1;
|
|
|
|
assert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
|
assert( 1 < nbd && nbd < 128 );
|
|
|
|
/* initialize local state */
|
|
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
|
memcpy( deltas + 8, deltas, 8 * sizeof( deltas[0] ));
|
|
|
|
/* initialize writer */
|
|
cvStartAppendToSeq( contour, &writer );
|
|
|
|
if( method < 0 )
|
|
((CvChain *)contour)->origin = pt;
|
|
|
|
rect.x = rect.width = pt.x;
|
|
rect.y = rect.height = pt.y;
|
|
|
|
s_end = s = CV_IS_SEQ_HOLE( contour ) ? 0 : 4;
|
|
|
|
do
|
|
{
|
|
s = (s - 1) & 7;
|
|
i1 = i0 + deltas[s];
|
|
if( *i1 != 0 )
|
|
break;
|
|
}
|
|
while( s != s_end );
|
|
|
|
if( s == s_end ) /* single pixel domain */
|
|
{
|
|
*i0 = (schar) (nbd | 0x80);
|
|
if( method >= 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
i3 = i0;
|
|
|
|
prev_s = s ^ 4;
|
|
|
|
/* follow border */
|
|
for( ;; )
|
|
{
|
|
s_end = s;
|
|
|
|
for( ;; )
|
|
{
|
|
i4 = i3 + deltas[++s];
|
|
if( *i4 != 0 )
|
|
break;
|
|
}
|
|
s &= 7;
|
|
|
|
/* check "right" bound */
|
|
if( (unsigned) (s - 1) < (unsigned) s_end )
|
|
{
|
|
*i3 = (schar) (nbd | 0x80);
|
|
}
|
|
else if( *i3 == 1 )
|
|
{
|
|
*i3 = (schar) nbd;
|
|
}
|
|
|
|
if( method < 0 )
|
|
{
|
|
schar _s = (schar) s;
|
|
CV_WRITE_SEQ_ELEM( _s, writer );
|
|
}
|
|
else if( s != prev_s || method == 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
}
|
|
|
|
if( s != prev_s )
|
|
{
|
|
/* update bounds */
|
|
if( pt.x < rect.x )
|
|
rect.x = pt.x;
|
|
else if( pt.x > rect.width )
|
|
rect.width = pt.x;
|
|
|
|
if( pt.y < rect.y )
|
|
rect.y = pt.y;
|
|
else if( pt.y > rect.height )
|
|
rect.height = pt.y;
|
|
}
|
|
|
|
prev_s = s;
|
|
pt.x += icvCodeDeltas[s].x;
|
|
pt.y += icvCodeDeltas[s].y;
|
|
|
|
if( i4 == i0 && i3 == i1 ) break;
|
|
|
|
i3 = i4;
|
|
s = (s + 4) & 7;
|
|
} /* end of border following loop */
|
|
}
|
|
|
|
rect.width -= rect.x - 1;
|
|
rect.height -= rect.y - 1;
|
|
|
|
cvEndWriteSeq( &writer );
|
|
|
|
if( _method != CV_CHAIN_CODE )
|
|
((CvContour*)contour)->rect = rect;
|
|
|
|
assert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
|
writer.seq->total > writer.seq->first->count ||
|
|
(writer.seq->first->prev == writer.seq->first &&
|
|
writer.seq->first->next == writer.seq->first) );
|
|
|
|
if( _rect ) *_rect = rect;
|
|
}
|
|
|
|
|
|
static int
|
|
icvTraceContour_32s( int *ptr, int step, int *stop_ptr, int is_hole )
|
|
{
|
|
int deltas[16];
|
|
int *i0 = ptr, *i1, *i3, *i4;
|
|
int s, s_end;
|
|
const int right_flag = INT_MIN;
|
|
const int new_flag = (int)((unsigned)INT_MIN >> 1);
|
|
const int value_mask = ~(right_flag | new_flag);
|
|
const int ccomp_val = *i0 & value_mask;
|
|
|
|
/* initialize local state */
|
|
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
|
memcpy( deltas + 8, deltas, 8 * sizeof( deltas[0] ));
|
|
|
|
s_end = s = is_hole ? 0 : 4;
|
|
|
|
do
|
|
{
|
|
s = (s - 1) & 7;
|
|
i1 = i0 + deltas[s];
|
|
if( (*i1 & value_mask) == ccomp_val )
|
|
break;
|
|
}
|
|
while( s != s_end );
|
|
|
|
i3 = i0;
|
|
|
|
/* check single pixel domain */
|
|
if( s != s_end )
|
|
{
|
|
/* follow border */
|
|
for( ;; )
|
|
{
|
|
s_end = s;
|
|
|
|
for( ;; )
|
|
{
|
|
i4 = i3 + deltas[++s];
|
|
if( (*i4 & value_mask) == ccomp_val )
|
|
break;
|
|
}
|
|
|
|
if( i3 == stop_ptr || (i4 == i0 && i3 == i1) )
|
|
break;
|
|
|
|
i3 = i4;
|
|
s = (s + 4) & 7;
|
|
} /* end of border following loop */
|
|
}
|
|
return i3 == stop_ptr;
|
|
}
|
|
|
|
|
|
static void
|
|
icvFetchContourEx_32s( int* ptr,
|
|
int step,
|
|
CvPoint pt,
|
|
CvSeq* contour,
|
|
int _method,
|
|
CvRect* _rect )
|
|
{
|
|
int deltas[16];
|
|
CvSeqWriter writer;
|
|
int *i0 = ptr, *i1, *i3, *i4;
|
|
CvRect rect;
|
|
int prev_s = -1, s, s_end;
|
|
int method = _method - 1;
|
|
const int right_flag = INT_MIN;
|
|
const int new_flag = (int)((unsigned)INT_MIN >> 1);
|
|
const int value_mask = ~(right_flag | new_flag);
|
|
const int ccomp_val = *i0 & value_mask;
|
|
const int nbd0 = ccomp_val | new_flag;
|
|
const int nbd1 = nbd0 | right_flag;
|
|
|
|
assert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
|
|
|
/* initialize local state */
|
|
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
|
memcpy( deltas + 8, deltas, 8 * sizeof( deltas[0] ));
|
|
|
|
/* initialize writer */
|
|
cvStartAppendToSeq( contour, &writer );
|
|
|
|
if( method < 0 )
|
|
((CvChain *)contour)->origin = pt;
|
|
|
|
rect.x = rect.width = pt.x;
|
|
rect.y = rect.height = pt.y;
|
|
|
|
s_end = s = CV_IS_SEQ_HOLE( contour ) ? 0 : 4;
|
|
|
|
do
|
|
{
|
|
s = (s - 1) & 7;
|
|
i1 = i0 + deltas[s];
|
|
if( (*i1 & value_mask) == ccomp_val )
|
|
break;
|
|
}
|
|
while( s != s_end );
|
|
|
|
if( s == s_end ) /* single pixel domain */
|
|
{
|
|
*i0 = nbd1;
|
|
if( method >= 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
i3 = i0;
|
|
prev_s = s ^ 4;
|
|
|
|
/* follow border */
|
|
for( ;; )
|
|
{
|
|
s_end = s;
|
|
|
|
for( ;; )
|
|
{
|
|
i4 = i3 + deltas[++s];
|
|
if( (*i4 & value_mask) == ccomp_val )
|
|
break;
|
|
}
|
|
s &= 7;
|
|
|
|
/* check "right" bound */
|
|
if( (unsigned) (s - 1) < (unsigned) s_end )
|
|
{
|
|
*i3 = nbd1;
|
|
}
|
|
else if( *i3 == ccomp_val )
|
|
{
|
|
*i3 = nbd0;
|
|
}
|
|
|
|
if( method < 0 )
|
|
{
|
|
schar _s = (schar) s;
|
|
CV_WRITE_SEQ_ELEM( _s, writer );
|
|
}
|
|
else if( s != prev_s || method == 0 )
|
|
{
|
|
CV_WRITE_SEQ_ELEM( pt, writer );
|
|
}
|
|
|
|
if( s != prev_s )
|
|
{
|
|
/* update bounds */
|
|
if( pt.x < rect.x )
|
|
rect.x = pt.x;
|
|
else if( pt.x > rect.width )
|
|
rect.width = pt.x;
|
|
|
|
if( pt.y < rect.y )
|
|
rect.y = pt.y;
|
|
else if( pt.y > rect.height )
|
|
rect.height = pt.y;
|
|
}
|
|
|
|
prev_s = s;
|
|
pt.x += icvCodeDeltas[s].x;
|
|
pt.y += icvCodeDeltas[s].y;
|
|
|
|
if( i4 == i0 && i3 == i1 ) break;
|
|
|
|
i3 = i4;
|
|
s = (s + 4) & 7;
|
|
} /* end of border following loop */
|
|
}
|
|
|
|
rect.width -= rect.x - 1;
|
|
rect.height -= rect.y - 1;
|
|
|
|
cvEndWriteSeq( &writer );
|
|
|
|
if( _method != CV_CHAIN_CODE )
|
|
((CvContour*)contour)->rect = rect;
|
|
|
|
assert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
|
writer.seq->total > writer.seq->first->count ||
|
|
(writer.seq->first->prev == writer.seq->first &&
|
|
writer.seq->first->next == writer.seq->first) );
|
|
|
|
if( _rect ) *_rect = rect;
|
|
}
|
|
|
|
|
|
CvSeq *
|
|
cvFindNextContour( CvContourScanner scanner )
|
|
{
|
|
if( !scanner )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
icvEndProcessContour( scanner );
|
|
|
|
/* initialize local state */
|
|
schar* img0 = scanner->img0;
|
|
schar* img = scanner->img;
|
|
int step = scanner->img_step;
|
|
int step_i = step / sizeof(int);
|
|
int x = scanner->pt.x;
|
|
int y = scanner->pt.y;
|
|
int width = scanner->img_size.width;
|
|
int height = scanner->img_size.height;
|
|
int mode = scanner->mode;
|
|
CvPoint lnbd = scanner->lnbd;
|
|
int nbd = scanner->nbd;
|
|
int prev = img[x - 1];
|
|
int new_mask = -2;
|
|
|
|
if( mode == CV_RETR_FLOODFILL )
|
|
{
|
|
prev = ((int*)img)[x - 1];
|
|
new_mask = INT_MIN >> 1;
|
|
}
|
|
|
|
for( ; y < height; y++, img += step )
|
|
{
|
|
int* img0_i = 0;
|
|
int* img_i = 0;
|
|
int p = 0;
|
|
|
|
if( mode == CV_RETR_FLOODFILL )
|
|
{
|
|
img0_i = (int*)img0;
|
|
img_i = (int*)img;
|
|
}
|
|
|
|
for( ; x < width; x++ )
|
|
{
|
|
if( img_i )
|
|
{
|
|
for( ; x < width && ((p = img_i[x]) == prev || (p & ~new_mask) == (prev & ~new_mask)); x++ )
|
|
prev = p;
|
|
}
|
|
else
|
|
{
|
|
for( ; x < width && (p = img[x]) == prev; x++ )
|
|
;
|
|
}
|
|
|
|
if( x >= width )
|
|
break;
|
|
|
|
{
|
|
_CvContourInfo *par_info = 0;
|
|
_CvContourInfo *l_cinfo = 0;
|
|
CvSeq *seq = 0;
|
|
int is_hole = 0;
|
|
CvPoint origin;
|
|
|
|
/* if not external contour */
|
|
if( (!img_i && !(prev == 0 && p == 1)) ||
|
|
(img_i && !(((prev & new_mask) != 0 || prev == 0) && (p & new_mask) == 0)) )
|
|
{
|
|
/* check hole */
|
|
if( (!img_i && (p != 0 || prev < 1)) ||
|
|
(img_i && ((prev & new_mask) != 0 || (p & new_mask) != 0)))
|
|
goto resume_scan;
|
|
|
|
if( prev & new_mask )
|
|
{
|
|
lnbd.x = x - 1;
|
|
}
|
|
is_hole = 1;
|
|
}
|
|
|
|
if( mode == 0 && (is_hole || img0[lnbd.y * step + lnbd.x] > 0) )
|
|
goto resume_scan;
|
|
|
|
origin.y = y;
|
|
origin.x = x - is_hole;
|
|
|
|
/* find contour parent */
|
|
if( mode <= 1 || (!is_hole && (mode == CV_RETR_CCOMP || mode == CV_RETR_FLOODFILL)) || lnbd.x <= 0 )
|
|
{
|
|
par_info = &(scanner->frame_info);
|
|
}
|
|
else
|
|
{
|
|
int lval = (img0_i ?
|
|
img0_i[lnbd.y * step_i + lnbd.x] :
|
|
(int)img0[lnbd.y * step + lnbd.x]) & 0x7f;
|
|
_CvContourInfo *cur = scanner->cinfo_table[lval];
|
|
|
|
/* find the first bounding contour */
|
|
while( cur )
|
|
{
|
|
if( (unsigned) (lnbd.x - cur->rect.x) < (unsigned) cur->rect.width &&
|
|
(unsigned) (lnbd.y - cur->rect.y) < (unsigned) cur->rect.height )
|
|
{
|
|
if( par_info )
|
|
{
|
|
if( (img0_i &&
|
|
icvTraceContour_32s( img0_i + par_info->origin.y * step_i +
|
|
par_info->origin.x, step_i, img_i + lnbd.x,
|
|
par_info->is_hole ) > 0) ||
|
|
(!img0_i &&
|
|
icvTraceContour( img0 + par_info->origin.y * step +
|
|
par_info->origin.x, step, img + lnbd.x,
|
|
par_info->is_hole ) > 0) )
|
|
break;
|
|
}
|
|
par_info = cur;
|
|
}
|
|
cur = cur->next;
|
|
}
|
|
|
|
assert( par_info != 0 );
|
|
|
|
/* if current contour is a hole and previous contour is a hole or
|
|
current contour is external and previous contour is external then
|
|
the parent of the contour is the parent of the previous contour else
|
|
the parent is the previous contour itself. */
|
|
if( par_info->is_hole == is_hole )
|
|
{
|
|
par_info = par_info->parent;
|
|
/* every contour must have a parent
|
|
(at least, the frame of the image) */
|
|
if( !par_info )
|
|
par_info = &(scanner->frame_info);
|
|
}
|
|
|
|
/* hole flag of the parent must differ from the flag of the contour */
|
|
assert( par_info->is_hole != is_hole );
|
|
if( par_info->contour == 0 ) /* removed contour */
|
|
goto resume_scan;
|
|
}
|
|
|
|
lnbd.x = x - is_hole;
|
|
|
|
cvSaveMemStoragePos( scanner->storage2, &(scanner->backup_pos) );
|
|
|
|
seq = cvCreateSeq( scanner->seq_type1, scanner->header_size1,
|
|
scanner->elem_size1, scanner->storage1 );
|
|
seq->flags |= is_hole ? CV_SEQ_FLAG_HOLE : 0;
|
|
|
|
/* initialize header */
|
|
if( mode <= 1 )
|
|
{
|
|
l_cinfo = &(scanner->cinfo_temp);
|
|
icvFetchContour( img + x - is_hole, step,
|
|
cvPoint( origin.x + scanner->offset.x,
|
|
origin.y + scanner->offset.y),
|
|
seq, scanner->approx_method1 );
|
|
}
|
|
else
|
|
{
|
|
union { _CvContourInfo* ci; CvSetElem* se; } v;
|
|
v.ci = l_cinfo;
|
|
cvSetAdd( scanner->cinfo_set, 0, &v.se );
|
|
l_cinfo = v.ci;
|
|
int lval;
|
|
|
|
if( img_i )
|
|
{
|
|
lval = img_i[x - is_hole] & 127;
|
|
icvFetchContourEx_32s(img_i + x - is_hole, step_i,
|
|
cvPoint( origin.x + scanner->offset.x,
|
|
origin.y + scanner->offset.y),
|
|
seq, scanner->approx_method1,
|
|
&(l_cinfo->rect) );
|
|
}
|
|
else
|
|
{
|
|
lval = nbd;
|
|
// change nbd
|
|
nbd = (nbd + 1) & 127;
|
|
nbd += nbd == 0 ? 3 : 0;
|
|
icvFetchContourEx( img + x - is_hole, step,
|
|
cvPoint( origin.x + scanner->offset.x,
|
|
origin.y + scanner->offset.y),
|
|
seq, scanner->approx_method1,
|
|
lval, &(l_cinfo->rect) );
|
|
}
|
|
l_cinfo->rect.x -= scanner->offset.x;
|
|
l_cinfo->rect.y -= scanner->offset.y;
|
|
|
|
l_cinfo->next = scanner->cinfo_table[lval];
|
|
scanner->cinfo_table[lval] = l_cinfo;
|
|
}
|
|
|
|
l_cinfo->is_hole = is_hole;
|
|
l_cinfo->contour = seq;
|
|
l_cinfo->origin = origin;
|
|
l_cinfo->parent = par_info;
|
|
|
|
if( scanner->approx_method1 != scanner->approx_method2 )
|
|
{
|
|
l_cinfo->contour = icvApproximateChainTC89( (CvChain *) seq,
|
|
scanner->header_size2,
|
|
scanner->storage2,
|
|
scanner->approx_method2 );
|
|
cvClearMemStorage( scanner->storage1 );
|
|
}
|
|
|
|
l_cinfo->contour->v_prev = l_cinfo->parent->contour;
|
|
|
|
if( par_info->contour == 0 )
|
|
{
|
|
l_cinfo->contour = 0;
|
|
if( scanner->storage1 == scanner->storage2 )
|
|
{
|
|
cvRestoreMemStoragePos( scanner->storage1, &(scanner->backup_pos) );
|
|
}
|
|
else
|
|
{
|
|
cvClearMemStorage( scanner->storage1 );
|
|
}
|
|
p = img[x];
|
|
goto resume_scan;
|
|
}
|
|
|
|
cvSaveMemStoragePos( scanner->storage2, &(scanner->backup_pos2) );
|
|
scanner->l_cinfo = l_cinfo;
|
|
scanner->pt.x = !img_i ? x + 1 : x + 1 - is_hole;
|
|
scanner->pt.y = y;
|
|
scanner->lnbd = lnbd;
|
|
scanner->img = (schar *) img;
|
|
scanner->nbd = nbd;
|
|
return l_cinfo->contour;
|
|
|
|
resume_scan:
|
|
|
|
prev = p;
|
|
/* update lnbd */
|
|
if( prev & -2 )
|
|
{
|
|
lnbd.x = x;
|
|
}
|
|
} /* end of prev != p */
|
|
} /* end of loop on x */
|
|
|
|
lnbd.x = 0;
|
|
lnbd.y = y + 1;
|
|
x = 1;
|
|
prev = 0;
|
|
} /* end of loop on y */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
The function add to tree the last retrieved/substituted contour,
|
|
releases temp_storage, restores state of dst_storage (if needed), and
|
|
returns pointer to root of the contour tree */
|
|
CV_IMPL CvSeq *
|
|
cvEndFindContours( CvContourScanner * _scanner )
|
|
{
|
|
CvContourScanner scanner;
|
|
CvSeq *first = 0;
|
|
|
|
if( !_scanner )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
scanner = *_scanner;
|
|
|
|
if( scanner )
|
|
{
|
|
icvEndProcessContour( scanner );
|
|
|
|
if( scanner->storage1 != scanner->storage2 )
|
|
cvReleaseMemStorage( &(scanner->storage1) );
|
|
|
|
if( scanner->cinfo_storage )
|
|
cvReleaseMemStorage( &(scanner->cinfo_storage) );
|
|
|
|
first = scanner->frame.v_next;
|
|
cvFree( _scanner );
|
|
}
|
|
|
|
return first;
|
|
}
|
|
|
|
|
|
#define ICV_SINGLE 0
|
|
#define ICV_CONNECTING_ABOVE 1
|
|
#define ICV_CONNECTING_BELOW -1
|
|
#define ICV_IS_COMPONENT_POINT(val) ((val) != 0)
|
|
|
|
#define CV_GET_WRITTEN_ELEM( writer ) ((writer).ptr - (writer).seq->elem_size)
|
|
|
|
typedef struct CvLinkedRunPoint
|
|
{
|
|
struct CvLinkedRunPoint* link;
|
|
struct CvLinkedRunPoint* next;
|
|
CvPoint pt;
|
|
}
|
|
CvLinkedRunPoint;
|
|
|
|
|
|
static int
|
|
icvFindContoursInInterval( const CvArr* src,
|
|
/*int minValue, int maxValue,*/
|
|
CvMemStorage* storage,
|
|
CvSeq** result,
|
|
int contourHeaderSize )
|
|
{
|
|
int count = 0;
|
|
cv::Ptr<CvMemStorage> storage00;
|
|
cv::Ptr<CvMemStorage> storage01;
|
|
CvSeq* first = 0;
|
|
|
|
int i, j, k, n;
|
|
|
|
uchar* src_data = 0;
|
|
int img_step = 0;
|
|
CvSize img_size;
|
|
|
|
int connect_flag;
|
|
int lower_total;
|
|
int upper_total;
|
|
int all_total;
|
|
|
|
CvSeq* runs;
|
|
CvLinkedRunPoint tmp;
|
|
CvLinkedRunPoint* tmp_prev;
|
|
CvLinkedRunPoint* upper_line = 0;
|
|
CvLinkedRunPoint* lower_line = 0;
|
|
CvLinkedRunPoint* last_elem;
|
|
|
|
CvLinkedRunPoint* upper_run = 0;
|
|
CvLinkedRunPoint* lower_run = 0;
|
|
CvLinkedRunPoint* prev_point = 0;
|
|
|
|
CvSeqWriter writer_ext;
|
|
CvSeqWriter writer_int;
|
|
CvSeqWriter writer;
|
|
CvSeqReader reader;
|
|
|
|
CvSeq* external_contours;
|
|
CvSeq* internal_contours;
|
|
CvSeq* prev = 0;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
|
|
|
if( !result )
|
|
CV_Error( CV_StsNullPtr, "NULL double CvSeq pointer" );
|
|
|
|
if( contourHeaderSize < (int)sizeof(CvContour))
|
|
CV_Error( CV_StsBadSize, "Contour header size must be >= sizeof(CvContour)" );
|
|
|
|
storage00 = cvCreateChildMemStorage(storage);
|
|
storage01 = cvCreateChildMemStorage(storage);
|
|
|
|
CvMat stub, *mat;
|
|
|
|
mat = cvGetMat( src, &stub );
|
|
if( !CV_IS_MASK_ARR(mat))
|
|
CV_Error( CV_StsBadArg, "Input array must be 8uC1 or 8sC1" );
|
|
src_data = mat->data.ptr;
|
|
img_step = mat->step;
|
|
img_size = cvGetMatSize( mat );
|
|
|
|
// Create temporary sequences
|
|
runs = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvLinkedRunPoint), storage00 );
|
|
cvStartAppendToSeq( runs, &writer );
|
|
|
|
cvStartWriteSeq( 0, sizeof(CvSeq), sizeof(CvLinkedRunPoint*), storage01, &writer_ext );
|
|
cvStartWriteSeq( 0, sizeof(CvSeq), sizeof(CvLinkedRunPoint*), storage01, &writer_int );
|
|
|
|
tmp_prev = &(tmp);
|
|
tmp_prev->next = 0;
|
|
tmp_prev->link = 0;
|
|
|
|
// First line. None of runs is binded
|
|
tmp.pt.y = 0;
|
|
i = 0;
|
|
CV_WRITE_SEQ_ELEM( tmp, writer );
|
|
upper_line = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
|
|
|
|
tmp_prev = upper_line;
|
|
for( j = 0; j < img_size.width; )
|
|
{
|
|
for( ; j < img_size.width && !ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
|
|
;
|
|
if( j == img_size.width )
|
|
break;
|
|
|
|
tmp.pt.x = j;
|
|
CV_WRITE_SEQ_ELEM( tmp, writer );
|
|
tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
|
|
tmp_prev = tmp_prev->next;
|
|
|
|
for( ; j < img_size.width && ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
|
|
;
|
|
|
|
tmp.pt.x = j-1;
|
|
CV_WRITE_SEQ_ELEM( tmp, writer );
|
|
tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
|
|
tmp_prev->link = tmp_prev->next;
|
|
// First point of contour
|
|
CV_WRITE_SEQ_ELEM( tmp_prev, writer_ext );
|
|
tmp_prev = tmp_prev->next;
|
|
}
|
|
cvFlushSeqWriter( &writer );
|
|
upper_line = upper_line->next;
|
|
upper_total = runs->total - 1;
|
|
last_elem = tmp_prev;
|
|
tmp_prev->next = 0;
|
|
|
|
for( i = 1; i < img_size.height; i++ )
|
|
{
|
|
//------// Find runs in next line
|
|
src_data += img_step;
|
|
tmp.pt.y = i;
|
|
all_total = runs->total;
|
|
for( j = 0; j < img_size.width; )
|
|
{
|
|
for( ; j < img_size.width && !ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
|
|
;
|
|
if( j == img_size.width ) break;
|
|
|
|
tmp.pt.x = j;
|
|
CV_WRITE_SEQ_ELEM( tmp, writer );
|
|
tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
|
|
tmp_prev = tmp_prev->next;
|
|
|
|
for( ; j < img_size.width && ICV_IS_COMPONENT_POINT(src_data[j]); j++ )
|
|
;
|
|
|
|
tmp.pt.x = j-1;
|
|
CV_WRITE_SEQ_ELEM( tmp, writer );
|
|
tmp_prev = tmp_prev->next = (CvLinkedRunPoint*)CV_GET_WRITTEN_ELEM( writer );
|
|
}//j
|
|
cvFlushSeqWriter( &writer );
|
|
lower_line = last_elem->next;
|
|
lower_total = runs->total - all_total;
|
|
last_elem = tmp_prev;
|
|
tmp_prev->next = 0;
|
|
//------//
|
|
//------// Find links between runs of lower_line and upper_line
|
|
upper_run = upper_line;
|
|
lower_run = lower_line;
|
|
connect_flag = ICV_SINGLE;
|
|
|
|
for( k = 0, n = 0; k < upper_total/2 && n < lower_total/2; )
|
|
{
|
|
switch( connect_flag )
|
|
{
|
|
case ICV_SINGLE:
|
|
if( upper_run->next->pt.x < lower_run->next->pt.x )
|
|
{
|
|
if( upper_run->next->pt.x >= lower_run->pt.x -1 )
|
|
{
|
|
lower_run->link = upper_run;
|
|
connect_flag = ICV_CONNECTING_ABOVE;
|
|
prev_point = upper_run->next;
|
|
}
|
|
else
|
|
upper_run->next->link = upper_run;
|
|
k++;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
else
|
|
{
|
|
if( upper_run->pt.x <= lower_run->next->pt.x +1 )
|
|
{
|
|
lower_run->link = upper_run;
|
|
connect_flag = ICV_CONNECTING_BELOW;
|
|
prev_point = lower_run->next;
|
|
}
|
|
else
|
|
{
|
|
lower_run->link = lower_run->next;
|
|
// First point of contour
|
|
CV_WRITE_SEQ_ELEM( lower_run, writer_ext );
|
|
}
|
|
n++;
|
|
lower_run = lower_run->next->next;
|
|
}
|
|
break;
|
|
case ICV_CONNECTING_ABOVE:
|
|
if( upper_run->pt.x > lower_run->next->pt.x +1 )
|
|
{
|
|
prev_point->link = lower_run->next;
|
|
connect_flag = ICV_SINGLE;
|
|
n++;
|
|
lower_run = lower_run->next->next;
|
|
}
|
|
else
|
|
{
|
|
prev_point->link = upper_run;
|
|
if( upper_run->next->pt.x < lower_run->next->pt.x )
|
|
{
|
|
k++;
|
|
prev_point = upper_run->next;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
else
|
|
{
|
|
connect_flag = ICV_CONNECTING_BELOW;
|
|
prev_point = lower_run->next;
|
|
n++;
|
|
lower_run = lower_run->next->next;
|
|
}
|
|
}
|
|
break;
|
|
case ICV_CONNECTING_BELOW:
|
|
if( lower_run->pt.x > upper_run->next->pt.x +1 )
|
|
{
|
|
upper_run->next->link = prev_point;
|
|
connect_flag = ICV_SINGLE;
|
|
k++;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
else
|
|
{
|
|
// First point of contour
|
|
CV_WRITE_SEQ_ELEM( lower_run, writer_int );
|
|
|
|
lower_run->link = prev_point;
|
|
if( lower_run->next->pt.x < upper_run->next->pt.x )
|
|
{
|
|
n++;
|
|
prev_point = lower_run->next;
|
|
lower_run = lower_run->next->next;
|
|
}
|
|
else
|
|
{
|
|
connect_flag = ICV_CONNECTING_ABOVE;
|
|
k++;
|
|
prev_point = upper_run->next;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}// k, n
|
|
|
|
for( ; n < lower_total/2; n++ )
|
|
{
|
|
if( connect_flag != ICV_SINGLE )
|
|
{
|
|
prev_point->link = lower_run->next;
|
|
connect_flag = ICV_SINGLE;
|
|
lower_run = lower_run->next->next;
|
|
continue;
|
|
}
|
|
lower_run->link = lower_run->next;
|
|
|
|
//First point of contour
|
|
CV_WRITE_SEQ_ELEM( lower_run, writer_ext );
|
|
|
|
lower_run = lower_run->next->next;
|
|
}
|
|
|
|
for( ; k < upper_total/2; k++ )
|
|
{
|
|
if( connect_flag != ICV_SINGLE )
|
|
{
|
|
upper_run->next->link = prev_point;
|
|
connect_flag = ICV_SINGLE;
|
|
upper_run = upper_run->next->next;
|
|
continue;
|
|
}
|
|
upper_run->next->link = upper_run;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
upper_line = lower_line;
|
|
upper_total = lower_total;
|
|
}//i
|
|
|
|
upper_run = upper_line;
|
|
|
|
//the last line of image
|
|
for( k = 0; k < upper_total/2; k++ )
|
|
{
|
|
upper_run->next->link = upper_run;
|
|
upper_run = upper_run->next->next;
|
|
}
|
|
|
|
//------//
|
|
//------//Find end read contours
|
|
external_contours = cvEndWriteSeq( &writer_ext );
|
|
internal_contours = cvEndWriteSeq( &writer_int );
|
|
|
|
for( k = 0; k < 2; k++ )
|
|
{
|
|
CvSeq* contours = k == 0 ? external_contours : internal_contours;
|
|
|
|
cvStartReadSeq( contours, &reader );
|
|
|
|
for( j = 0; j < contours->total; j++, count++ )
|
|
{
|
|
CvLinkedRunPoint* p_temp;
|
|
CvLinkedRunPoint* p00;
|
|
CvLinkedRunPoint* p01;
|
|
CvSeq* contour;
|
|
|
|
CV_READ_SEQ_ELEM( p00, reader );
|
|
p01 = p00;
|
|
|
|
if( !p00->link )
|
|
continue;
|
|
|
|
cvStartWriteSeq( CV_SEQ_ELTYPE_POINT | CV_SEQ_POLYLINE | CV_SEQ_FLAG_CLOSED,
|
|
contourHeaderSize, sizeof(CvPoint), storage, &writer );
|
|
do
|
|
{
|
|
CV_WRITE_SEQ_ELEM( p00->pt, writer );
|
|
p_temp = p00;
|
|
p00 = p00->link;
|
|
p_temp->link = 0;
|
|
}
|
|
while( p00 != p01 );
|
|
|
|
contour = cvEndWriteSeq( &writer );
|
|
cvBoundingRect( contour, 1 );
|
|
|
|
if( k != 0 )
|
|
contour->flags |= CV_SEQ_FLAG_HOLE;
|
|
|
|
if( !first )
|
|
prev = first = contour;
|
|
else
|
|
{
|
|
contour->h_prev = prev;
|
|
prev = prev->h_next = contour;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( !first )
|
|
count = -1;
|
|
|
|
if( result )
|
|
*result = first;
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
|
|
/*F///////////////////////////////////////////////////////////////////////////////////////
|
|
// Name: cvFindContours
|
|
// Purpose:
|
|
// Finds all the contours on the bi-level image.
|
|
// Context:
|
|
// Parameters:
|
|
// img - source image.
|
|
// Non-zero pixels are considered as 1-pixels
|
|
// and zero pixels as 0-pixels.
|
|
// step - full width of source image in bytes.
|
|
// size - width and height of the image in pixels
|
|
// storage - pointer to storage where will the output contours be placed.
|
|
// header_size - header size of resulting contours
|
|
// mode - mode of contour retrieval.
|
|
// method - method of approximation that is applied to contours
|
|
// first_contour - pointer to first contour pointer
|
|
// Returns:
|
|
// CV_OK or error code
|
|
// Notes:
|
|
//F*/
|
|
CV_IMPL int
|
|
cvFindContours( void* img, CvMemStorage* storage,
|
|
CvSeq** firstContour, int cntHeaderSize,
|
|
int mode,
|
|
int method, CvPoint offset )
|
|
{
|
|
CvContourScanner scanner = 0;
|
|
CvSeq *contour = 0;
|
|
int count = -1;
|
|
|
|
if( !firstContour )
|
|
CV_Error( CV_StsNullPtr, "NULL double CvSeq pointer" );
|
|
|
|
*firstContour = 0;
|
|
|
|
if( method == CV_LINK_RUNS )
|
|
{
|
|
if( offset.x != 0 || offset.y != 0 )
|
|
CV_Error( CV_StsOutOfRange,
|
|
"Nonzero offset is not supported in CV_LINK_RUNS yet" );
|
|
|
|
count = icvFindContoursInInterval( img, storage, firstContour, cntHeaderSize );
|
|
}
|
|
else
|
|
{
|
|
try
|
|
{
|
|
scanner = cvStartFindContours( img, storage, cntHeaderSize, mode, method, offset );
|
|
|
|
do
|
|
{
|
|
count++;
|
|
contour = cvFindNextContour( scanner );
|
|
}
|
|
while( contour != 0 );
|
|
}
|
|
catch(...)
|
|
{
|
|
if( scanner )
|
|
cvEndFindContours(&scanner);
|
|
throw;
|
|
}
|
|
|
|
*firstContour = cvEndFindContours( &scanner );
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void cv::findContours( InputOutputArray _image, OutputArrayOfArrays _contours,
|
|
OutputArray _hierarchy, int mode, int method, Point offset )
|
|
{
|
|
Mat image = _image.getMat();
|
|
MemStorage storage(cvCreateMemStorage());
|
|
CvMat _cimage = image;
|
|
CvSeq* _ccontours = 0;
|
|
if( _hierarchy.needed() )
|
|
_hierarchy.clear();
|
|
cvFindContours(&_cimage, storage, &_ccontours, sizeof(CvContour), mode, method, offset);
|
|
if( !_ccontours )
|
|
{
|
|
_contours.clear();
|
|
return;
|
|
}
|
|
Seq<CvSeq*> all_contours(cvTreeToNodeSeq( _ccontours, sizeof(CvSeq), storage ));
|
|
int i, total = (int)all_contours.size();
|
|
_contours.create(total, 1, 0, -1, true);
|
|
SeqIterator<CvSeq*> it = all_contours.begin();
|
|
for( i = 0; i < total; i++, ++it )
|
|
{
|
|
CvSeq* c = *it;
|
|
((CvContour*)c)->color = (int)i;
|
|
_contours.create((int)c->total, 1, CV_32SC2, i, true);
|
|
Mat ci = _contours.getMat(i);
|
|
CV_Assert( ci.isContinuous() );
|
|
cvCvtSeqToArray(c, ci.data);
|
|
}
|
|
|
|
if( _hierarchy.needed() )
|
|
{
|
|
_hierarchy.create(1, total, CV_32SC4, -1, true);
|
|
Vec4i* hierarchy = _hierarchy.getMat().ptr<Vec4i>();
|
|
|
|
it = all_contours.begin();
|
|
for( i = 0; i < total; i++, ++it )
|
|
{
|
|
CvSeq* c = *it;
|
|
int h_next = c->h_next ? ((CvContour*)c->h_next)->color : -1;
|
|
int h_prev = c->h_prev ? ((CvContour*)c->h_prev)->color : -1;
|
|
int v_next = c->v_next ? ((CvContour*)c->v_next)->color : -1;
|
|
int v_prev = c->v_prev ? ((CvContour*)c->v_prev)->color : -1;
|
|
hierarchy[i] = Vec4i(h_next, h_prev, v_next, v_prev);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::findContours( InputOutputArray _image, OutputArrayOfArrays _contours,
|
|
int mode, int method, Point offset)
|
|
{
|
|
findContours(_image, _contours, noArray(), mode, method, offset);
|
|
}
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static void addChildContour(InputArrayOfArrays contours,
|
|
size_t ncontours,
|
|
const Vec4i* hierarchy,
|
|
int i, vector<CvSeq>& seq,
|
|
vector<CvSeqBlock>& block)
|
|
{
|
|
for( ; i >= 0; i = hierarchy[i][0] )
|
|
{
|
|
Mat ci = contours.getMat(i);
|
|
cvMakeSeqHeaderForArray(CV_SEQ_POLYGON, sizeof(CvSeq), sizeof(Point),
|
|
!ci.empty() ? (void*)ci.data : 0, (int)ci.total(),
|
|
&seq[i], &block[i] );
|
|
|
|
int h_next = hierarchy[i][0], h_prev = hierarchy[i][1],
|
|
v_next = hierarchy[i][2], v_prev = hierarchy[i][3];
|
|
seq[i].h_next = (size_t)h_next < ncontours ? &seq[h_next] : 0;
|
|
seq[i].h_prev = (size_t)h_prev < ncontours ? &seq[h_prev] : 0;
|
|
seq[i].v_next = (size_t)v_next < ncontours ? &seq[v_next] : 0;
|
|
seq[i].v_prev = (size_t)v_prev < ncontours ? &seq[v_prev] : 0;
|
|
|
|
if( v_next >= 0 )
|
|
addChildContour(contours, ncontours, hierarchy, v_next, seq, block);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void cv::drawContours( InputOutputArray _image, InputArrayOfArrays _contours,
|
|
int contourIdx, const Scalar& color, int thickness,
|
|
int lineType, InputArray _hierarchy,
|
|
int maxLevel, Point offset )
|
|
{
|
|
Mat image = _image.getMat(), hierarchy = _hierarchy.getMat();
|
|
CvMat _cimage = image;
|
|
|
|
size_t ncontours = _contours.total();
|
|
size_t i = 0, first = 0, last = ncontours;
|
|
vector<CvSeq> seq;
|
|
vector<CvSeqBlock> block;
|
|
|
|
if( !last )
|
|
return;
|
|
|
|
seq.resize(last);
|
|
block.resize(last);
|
|
|
|
for( i = first; i < last; i++ )
|
|
seq[i].first = 0;
|
|
|
|
if( contourIdx >= 0 )
|
|
{
|
|
CV_Assert( 0 <= contourIdx && contourIdx < (int)last );
|
|
first = contourIdx;
|
|
last = contourIdx + 1;
|
|
}
|
|
|
|
for( i = first; i < last; i++ )
|
|
{
|
|
Mat ci = _contours.getMat((int)i);
|
|
if( ci.empty() )
|
|
continue;
|
|
int npoints = ci.checkVector(2, CV_32S);
|
|
CV_Assert( npoints > 0 );
|
|
cvMakeSeqHeaderForArray( CV_SEQ_POLYGON, sizeof(CvSeq), sizeof(Point),
|
|
ci.data, npoints, &seq[i], &block[i] );
|
|
}
|
|
|
|
if( hierarchy.empty() || maxLevel == 0 )
|
|
for( i = first; i < last; i++ )
|
|
{
|
|
seq[i].h_next = i < last-1 ? &seq[i+1] : 0;
|
|
seq[i].h_prev = i > first ? &seq[i-1] : 0;
|
|
}
|
|
else
|
|
{
|
|
size_t count = last - first;
|
|
CV_Assert(hierarchy.total() == ncontours && hierarchy.type() == CV_32SC4 );
|
|
const Vec4i* h = hierarchy.ptr<Vec4i>();
|
|
|
|
if( count == ncontours )
|
|
{
|
|
for( i = first; i < last; i++ )
|
|
{
|
|
int h_next = h[i][0], h_prev = h[i][1],
|
|
v_next = h[i][2], v_prev = h[i][3];
|
|
seq[i].h_next = (size_t)h_next < count ? &seq[h_next] : 0;
|
|
seq[i].h_prev = (size_t)h_prev < count ? &seq[h_prev] : 0;
|
|
seq[i].v_next = (size_t)v_next < count ? &seq[v_next] : 0;
|
|
seq[i].v_prev = (size_t)v_prev < count ? &seq[v_prev] : 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int child = h[first][2];
|
|
if( child >= 0 )
|
|
{
|
|
addChildContour(_contours, ncontours, h, child, seq, block);
|
|
seq[first].v_next = &seq[child];
|
|
}
|
|
}
|
|
}
|
|
|
|
cvDrawContours( &_cimage, &seq[first], color, color, contourIdx >= 0 ?
|
|
-maxLevel : maxLevel, thickness, lineType, offset );
|
|
}
|
|
|
|
|
|
void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
|
|
double epsilon, bool closed )
|
|
{
|
|
Mat curve = _curve.getMat();
|
|
int npoints = curve.checkVector(2), depth = curve.depth();
|
|
CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F));
|
|
CvMat _ccurve = curve;
|
|
MemStorage storage(cvCreateMemStorage());
|
|
CvSeq* result = cvApproxPoly(&_ccurve, sizeof(CvContour), storage, CV_POLY_APPROX_DP, epsilon, closed);
|
|
if( result->total > 0 )
|
|
{
|
|
_approxCurve.create(result->total, 1, CV_MAKETYPE(curve.depth(), 2), -1, true);
|
|
cvCvtSeqToArray(result, _approxCurve.getMat().data );
|
|
}
|
|
}
|
|
|
|
|
|
double cv::arcLength( InputArray _curve, bool closed )
|
|
{
|
|
Mat curve = _curve.getMat();
|
|
CV_Assert(curve.checkVector(2) >= 0 && (curve.depth() == CV_32F || curve.depth() == CV_32S));
|
|
CvMat _ccurve = curve;
|
|
return cvArcLength(&_ccurve, CV_WHOLE_SEQ, closed);
|
|
}
|
|
|
|
|
|
cv::Rect cv::boundingRect( InputArray _points )
|
|
{
|
|
Mat points = _points.getMat();
|
|
CV_Assert(points.checkVector(2) >= 0 && (points.depth() == CV_32F || points.depth() == CV_32S));
|
|
CvMat _cpoints = points;
|
|
return cvBoundingRect(&_cpoints, 0);
|
|
}
|
|
|
|
|
|
double cv::contourArea( InputArray _contour, bool oriented )
|
|
{
|
|
Mat contour = _contour.getMat();
|
|
CV_Assert(contour.checkVector(2) >= 0 && (contour.depth() == CV_32F || contour.depth() == CV_32S));
|
|
CvMat _ccontour = contour;
|
|
return cvContourArea(&_ccontour, CV_WHOLE_SEQ, oriented);
|
|
}
|
|
|
|
|
|
cv::RotatedRect cv::minAreaRect( InputArray _points )
|
|
{
|
|
Mat points = _points.getMat();
|
|
CV_Assert(points.checkVector(2) >= 0 && (points.depth() == CV_32F || points.depth() == CV_32S));
|
|
CvMat _cpoints = points;
|
|
return cvMinAreaRect2(&_cpoints, 0);
|
|
}
|
|
|
|
|
|
void cv::minEnclosingCircle( InputArray _points,
|
|
Point2f& center, float& radius )
|
|
{
|
|
Mat points = _points.getMat();
|
|
CV_Assert(points.checkVector(2) >= 0 && (points.depth() == CV_32F || points.depth() == CV_32S));
|
|
CvMat _cpoints = points;
|
|
cvMinEnclosingCircle( &_cpoints, (CvPoint2D32f*)¢er, &radius );
|
|
}
|
|
|
|
|
|
double cv::matchShapes( InputArray _contour1,
|
|
InputArray _contour2,
|
|
int method, double parameter )
|
|
{
|
|
Mat contour1 = _contour1.getMat(), contour2 = _contour2.getMat();
|
|
CV_Assert(contour1.checkVector(2) >= 0 && contour2.checkVector(2) >= 0 &&
|
|
(contour1.depth() == CV_32F || contour1.depth() == CV_32S) &&
|
|
contour1.depth() == contour2.depth());
|
|
|
|
CvMat c1 = Mat(contour1), c2 = Mat(contour2);
|
|
return cvMatchShapes(&c1, &c2, method, parameter);
|
|
}
|
|
|
|
|
|
void cv::convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
|
|
{
|
|
Mat points = _points.getMat();
|
|
int nelems = points.checkVector(2), depth = points.depth();
|
|
CV_Assert(nelems >= 0 && (depth == CV_32F || depth == CV_32S));
|
|
|
|
if( nelems == 0 )
|
|
{
|
|
_hull.release();
|
|
return;
|
|
}
|
|
|
|
returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
|
|
Mat hull(nelems, 1, returnPoints ? CV_MAKETYPE(depth, 2) : CV_32S);
|
|
CvMat _cpoints = points, _chull = hull;
|
|
cvConvexHull2(&_cpoints, &_chull, clockwise ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE, returnPoints);
|
|
_hull.create(_chull.rows, 1, hull.type(), -1, true);
|
|
Mat dhull = _hull.getMat(), shull(dhull.size(), dhull.type(), hull.data);
|
|
shull.copyTo(dhull);
|
|
}
|
|
|
|
|
|
void cv::convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
|
|
{
|
|
Mat points = _points.getMat();
|
|
int ptnum = points.checkVector(2, CV_32S);
|
|
CV_Assert( ptnum > 3 );
|
|
Mat hull = _hull.getMat();
|
|
CV_Assert( hull.checkVector(1, CV_32S) > 2 );
|
|
Ptr<CvMemStorage> storage = cvCreateMemStorage();
|
|
|
|
CvMat c_points = points, c_hull = hull;
|
|
CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage);
|
|
int i, n = seq->total;
|
|
|
|
if( n == 0 )
|
|
{
|
|
_defects.release();
|
|
return;
|
|
}
|
|
|
|
_defects.create(n, 1, CV_32SC4);
|
|
Mat defects = _defects.getMat();
|
|
|
|
SeqIterator<CvConvexityDefect> it = Seq<CvConvexityDefect>(seq).begin();
|
|
CvPoint* ptorg = (CvPoint*)points.data;
|
|
|
|
for( i = 0; i < n; i++, ++it )
|
|
{
|
|
CvConvexityDefect& d = *it;
|
|
int idx0 = (int)(d.start - ptorg);
|
|
int idx1 = (int)(d.end - ptorg);
|
|
int idx2 = (int)(d.depth_point - ptorg);
|
|
CV_Assert( 0 <= idx0 && idx0 < ptnum );
|
|
CV_Assert( 0 <= idx1 && idx1 < ptnum );
|
|
CV_Assert( 0 <= idx2 && idx2 < ptnum );
|
|
CV_Assert( d.depth >= 0 );
|
|
int idepth = cvRound(d.depth*256);
|
|
defects.at<Vec4i>(i) = Vec4i(idx0, idx1, idx2, idepth);
|
|
}
|
|
}
|
|
|
|
|
|
bool cv::isContourConvex( InputArray _contour )
|
|
{
|
|
Mat contour = _contour.getMat();
|
|
CV_Assert(contour.checkVector(2) >= 0 &&
|
|
(contour.depth() == CV_32F || contour.depth() == CV_32S));
|
|
CvMat c = Mat(contour);
|
|
return cvCheckContourConvexity(&c) > 0;
|
|
}
|
|
|
|
cv::RotatedRect cv::fitEllipse( InputArray _points )
|
|
{
|
|
Mat points = _points.getMat();
|
|
CV_Assert(points.checkVector(2) >= 0 &&
|
|
(points.depth() == CV_32F || points.depth() == CV_32S));
|
|
CvMat _cpoints = points;
|
|
return cvFitEllipse2(&_cpoints);
|
|
}
|
|
|
|
|
|
void cv::fitLine( InputArray _points, OutputArray _line, int distType,
|
|
double param, double reps, double aeps )
|
|
{
|
|
Mat points = _points.getMat();
|
|
|
|
bool is3d = points.checkVector(3) >= 0;
|
|
bool is2d = points.checkVector(2) >= 0;
|
|
|
|
CV_Assert( (is2d || is3d) && (points.depth() == CV_32F || points.depth() == CV_32S) );
|
|
CvMat _cpoints = points.reshape(2 + (int)is3d);
|
|
float line[6];
|
|
cvFitLine(&_cpoints, distType, param, reps, aeps, &line[0]);
|
|
|
|
int out_size = (is2d)?( (is3d)? (points.channels() * points.rows * 2) : 4 ): 6;
|
|
|
|
_line.create(out_size, 1, CV_32F, -1, true);
|
|
Mat l = _line.getMat();
|
|
CV_Assert( l.isContinuous() );
|
|
memcpy( l.data, line, out_size * sizeof(line[0]) );
|
|
}
|
|
|
|
|
|
double cv::pointPolygonTest( InputArray _contour,
|
|
Point2f pt, bool measureDist )
|
|
{
|
|
Mat contour = _contour.getMat();
|
|
CV_Assert(contour.checkVector(2) >= 0 &&
|
|
(contour.depth() == CV_32F || contour.depth() == CV_32S));
|
|
CvMat c = Mat(contour);
|
|
return cvPointPolygonTest( &c, pt, measureDist );
|
|
}
|
|
|
|
/* End of file. */
|