704 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			704 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_CUDA
 | 
						|
 | 
						|
using namespace cvtest;
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// FAST
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
 | 
						|
}
 | 
						|
 | 
						|
PARAM_TEST_CASE(FAST, cv::cuda::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
 | 
						|
{
 | 
						|
    cv::cuda::DeviceInfo devInfo;
 | 
						|
    int threshold;
 | 
						|
    bool nonmaxSupression;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        devInfo = GET_PARAM(0);
 | 
						|
        threshold = GET_PARAM(1);
 | 
						|
        nonmaxSupression = GET_PARAM(2);
 | 
						|
 | 
						|
        cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(FAST, Accuracy)
 | 
						|
{
 | 
						|
    cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
 | 
						|
    ASSERT_FALSE(image.empty());
 | 
						|
 | 
						|
    cv::cuda::FAST_CUDA fast(threshold);
 | 
						|
    fast.nonmaxSupression = nonmaxSupression;
 | 
						|
 | 
						|
    if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
 | 
						|
    {
 | 
						|
        try
 | 
						|
        {
 | 
						|
            std::vector<cv::KeyPoint> keypoints;
 | 
						|
            fast(loadMat(image), cv::cuda::GpuMat(), keypoints);
 | 
						|
        }
 | 
						|
        catch (const cv::Exception& e)
 | 
						|
        {
 | 
						|
            ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        std::vector<cv::KeyPoint> keypoints;
 | 
						|
        fast(loadMat(image), cv::cuda::GpuMat(), keypoints);
 | 
						|
 | 
						|
        std::vector<cv::KeyPoint> keypoints_gold;
 | 
						|
        cv::FAST(image, keypoints_gold, threshold, nonmaxSupression);
 | 
						|
 | 
						|
        ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_Features2D, FAST, testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    testing::Values(FAST_Threshold(25), FAST_Threshold(50)),
 | 
						|
    testing::Values(FAST_NonmaxSupression(false), FAST_NonmaxSupression(true))));
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// ORB
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
 | 
						|
}
 | 
						|
 | 
						|
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE)
 | 
						|
 | 
						|
PARAM_TEST_CASE(ORB, cv::cuda::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
 | 
						|
{
 | 
						|
    cv::cuda::DeviceInfo devInfo;
 | 
						|
    int nFeatures;
 | 
						|
    float scaleFactor;
 | 
						|
    int nLevels;
 | 
						|
    int edgeThreshold;
 | 
						|
    int firstLevel;
 | 
						|
    int WTA_K;
 | 
						|
    int scoreType;
 | 
						|
    int patchSize;
 | 
						|
    bool blurForDescriptor;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        devInfo = GET_PARAM(0);
 | 
						|
        nFeatures = GET_PARAM(1);
 | 
						|
        scaleFactor = GET_PARAM(2);
 | 
						|
        nLevels = GET_PARAM(3);
 | 
						|
        edgeThreshold = GET_PARAM(4);
 | 
						|
        firstLevel = GET_PARAM(5);
 | 
						|
        WTA_K = GET_PARAM(6);
 | 
						|
        scoreType = GET_PARAM(7);
 | 
						|
        patchSize = GET_PARAM(8);
 | 
						|
        blurForDescriptor = GET_PARAM(9);
 | 
						|
 | 
						|
        cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(ORB, Accuracy)
 | 
						|
{
 | 
						|
    cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
 | 
						|
    ASSERT_FALSE(image.empty());
 | 
						|
 | 
						|
    cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
 | 
						|
    mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
    cv::cuda::ORB_CUDA orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
 | 
						|
    orb.blurForDescriptor = blurForDescriptor;
 | 
						|
 | 
						|
    if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
 | 
						|
    {
 | 
						|
        try
 | 
						|
        {
 | 
						|
            std::vector<cv::KeyPoint> keypoints;
 | 
						|
            cv::cuda::GpuMat descriptors;
 | 
						|
            orb(loadMat(image), loadMat(mask), keypoints, descriptors);
 | 
						|
        }
 | 
						|
        catch (const cv::Exception& e)
 | 
						|
        {
 | 
						|
            ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        std::vector<cv::KeyPoint> keypoints;
 | 
						|
        cv::cuda::GpuMat descriptors;
 | 
						|
        orb(loadMat(image), loadMat(mask), keypoints, descriptors);
 | 
						|
 | 
						|
        cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
 | 
						|
 | 
						|
        std::vector<cv::KeyPoint> keypoints_gold;
 | 
						|
        cv::Mat descriptors_gold;
 | 
						|
        orb_gold(image, mask, keypoints_gold, descriptors_gold);
 | 
						|
 | 
						|
        cv::BFMatcher matcher(cv::NORM_HAMMING);
 | 
						|
        std::vector<cv::DMatch> matches;
 | 
						|
        matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
 | 
						|
 | 
						|
        int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
 | 
						|
        double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
 | 
						|
 | 
						|
        EXPECT_GT(matchedRatio, 0.35);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_Features2D, ORB,  testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    testing::Values(ORB_FeaturesCount(1000)),
 | 
						|
    testing::Values(ORB_ScaleFactor(1.2f)),
 | 
						|
    testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
 | 
						|
    testing::Values(ORB_EdgeThreshold(31)),
 | 
						|
    testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)),
 | 
						|
    testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
 | 
						|
    testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
 | 
						|
    testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
 | 
						|
    testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// BruteForceMatcher
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
 | 
						|
    IMPLEMENT_PARAM_CLASS(UseMask, bool)
 | 
						|
}
 | 
						|
 | 
						|
PARAM_TEST_CASE(BruteForceMatcher, cv::cuda::DeviceInfo, NormCode, DescriptorSize, UseMask)
 | 
						|
{
 | 
						|
    cv::cuda::DeviceInfo devInfo;
 | 
						|
    int normCode;
 | 
						|
    int dim;
 | 
						|
    bool useMask;
 | 
						|
 | 
						|
    int queryDescCount;
 | 
						|
    int countFactor;
 | 
						|
 | 
						|
    cv::Mat query, train;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        devInfo = GET_PARAM(0);
 | 
						|
        normCode = GET_PARAM(1);
 | 
						|
        dim = GET_PARAM(2);
 | 
						|
        useMask = GET_PARAM(3);
 | 
						|
 | 
						|
        cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
 | 
						|
        queryDescCount = 300; // must be even number because we split train data in some cases in two
 | 
						|
        countFactor = 4; // do not change it
 | 
						|
 | 
						|
        cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | 
						|
 | 
						|
        cv::Mat queryBuf, trainBuf;
 | 
						|
 | 
						|
        // Generate query descriptors randomly.
 | 
						|
        // Descriptor vector elements are integer values.
 | 
						|
        queryBuf.create(queryDescCount, dim, CV_32SC1);
 | 
						|
        rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
 | 
						|
        queryBuf.convertTo(queryBuf, CV_32FC1);
 | 
						|
 | 
						|
        // Generate train decriptors as follows:
 | 
						|
        // copy each query descriptor to train set countFactor times
 | 
						|
        // and perturb some one element of the copied descriptors in
 | 
						|
        // in ascending order. General boundaries of the perturbation
 | 
						|
        // are (0.f, 1.f).
 | 
						|
        trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
 | 
						|
        float step = 1.f / countFactor;
 | 
						|
        for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
 | 
						|
        {
 | 
						|
            cv::Mat queryDescriptor = queryBuf.row(qIdx);
 | 
						|
            for (int c = 0; c < countFactor; c++)
 | 
						|
            {
 | 
						|
                int tIdx = qIdx * countFactor + c;
 | 
						|
                cv::Mat trainDescriptor = trainBuf.row(tIdx);
 | 
						|
                queryDescriptor.copyTo(trainDescriptor);
 | 
						|
                int elem = rng(dim);
 | 
						|
                float diff = rng.uniform(step * c, step * (c + 1));
 | 
						|
                trainDescriptor.at<float>(0, elem) += diff;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        queryBuf.convertTo(query, CV_32F);
 | 
						|
        trainBuf.convertTo(train, CV_32F);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, Match_Single)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    cv::cuda::GpuMat mask;
 | 
						|
    if (useMask)
 | 
						|
    {
 | 
						|
        mask.create(query.rows, train.rows, CV_8UC1);
 | 
						|
        mask.setTo(cv::Scalar::all(1));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<cv::DMatch> matches;
 | 
						|
    matcher.match(loadMat(query), loadMat(train), matches, mask);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        cv::DMatch match = matches[i];
 | 
						|
        if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
 | 
						|
            badCount++;
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, Match_Collection)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_train(train);
 | 
						|
 | 
						|
    // make add() twice to test such case
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
 | 
						|
 | 
						|
    // prepare masks (make first nearest match illegal)
 | 
						|
    std::vector<cv::cuda::GpuMat> masks(2);
 | 
						|
    for (int mi = 0; mi < 2; mi++)
 | 
						|
    {
 | 
						|
        masks[mi] = cv::cuda::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1));
 | 
						|
        for (int di = 0; di < queryDescCount/2; di++)
 | 
						|
            masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<cv::DMatch> matches;
 | 
						|
    if (useMask)
 | 
						|
        matcher.match(cv::cuda::GpuMat(query), matches, masks);
 | 
						|
    else
 | 
						|
        matcher.match(cv::cuda::GpuMat(query), matches);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    int shift = useMask ? 1 : 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        cv::DMatch match = matches[i];
 | 
						|
 | 
						|
        if ((int)i < queryDescCount / 2)
 | 
						|
        {
 | 
						|
            bool validQueryIdx = (match.queryIdx == (int)i);
 | 
						|
            bool validTrainIdx = (match.trainIdx == (int)i * countFactor + shift);
 | 
						|
            bool validImgIdx = (match.imgIdx == 0);
 | 
						|
            if (!validQueryIdx || !validTrainIdx || !validImgIdx)
 | 
						|
                badCount++;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            bool validQueryIdx = (match.queryIdx == (int)i);
 | 
						|
            bool validTrainIdx = (match.trainIdx == ((int)i - queryDescCount / 2) * countFactor + shift);
 | 
						|
            bool validImgIdx = (match.imgIdx == 1);
 | 
						|
            if (!validQueryIdx || !validTrainIdx || !validImgIdx)
 | 
						|
                badCount++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const int knn = 2;
 | 
						|
 | 
						|
    cv::cuda::GpuMat mask;
 | 
						|
    if (useMask)
 | 
						|
    {
 | 
						|
        mask.create(query.rows, train.rows, CV_8UC1);
 | 
						|
        mask.setTo(cv::Scalar::all(1));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
    matcher.knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        if ((int)matches[i].size() != knn)
 | 
						|
            badCount++;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int localBadCount = 0;
 | 
						|
            for (int k = 0; k < knn; k++)
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][k];
 | 
						|
                if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
 | 
						|
                    localBadCount++;
 | 
						|
            }
 | 
						|
            badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const int knn = 3;
 | 
						|
 | 
						|
    cv::cuda::GpuMat mask;
 | 
						|
    if (useMask)
 | 
						|
    {
 | 
						|
        mask.create(query.rows, train.rows, CV_8UC1);
 | 
						|
        mask.setTo(cv::Scalar::all(1));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
    matcher.knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        if ((int)matches[i].size() != knn)
 | 
						|
            badCount++;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int localBadCount = 0;
 | 
						|
            for (int k = 0; k < knn; k++)
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][k];
 | 
						|
                if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
 | 
						|
                    localBadCount++;
 | 
						|
            }
 | 
						|
            badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const int knn = 2;
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_train(train);
 | 
						|
 | 
						|
    // make add() twice to test such case
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
 | 
						|
 | 
						|
    // prepare masks (make first nearest match illegal)
 | 
						|
    std::vector<cv::cuda::GpuMat> masks(2);
 | 
						|
    for (int mi = 0; mi < 2; mi++ )
 | 
						|
    {
 | 
						|
        masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
 | 
						|
        for (int di = 0; di < queryDescCount / 2; di++)
 | 
						|
            masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
 | 
						|
    if (useMask)
 | 
						|
        matcher.knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
 | 
						|
    else
 | 
						|
        matcher.knnMatch(cv::cuda::GpuMat(query), matches, knn);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    int shift = useMask ? 1 : 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        if ((int)matches[i].size() != knn)
 | 
						|
            badCount++;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int localBadCount = 0;
 | 
						|
            for (int k = 0; k < knn; k++)
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][k];
 | 
						|
                {
 | 
						|
                    if ((int)i < queryDescCount / 2)
 | 
						|
                    {
 | 
						|
                        if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
 | 
						|
                            localBadCount++;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
 | 
						|
                            localBadCount++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const int knn = 3;
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_train(train);
 | 
						|
 | 
						|
    // make add() twice to test such case
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
 | 
						|
 | 
						|
    // prepare masks (make first nearest match illegal)
 | 
						|
    std::vector<cv::cuda::GpuMat> masks(2);
 | 
						|
    for (int mi = 0; mi < 2; mi++ )
 | 
						|
    {
 | 
						|
        masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
 | 
						|
        for (int di = 0; di < queryDescCount / 2; di++)
 | 
						|
            masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
 | 
						|
    if (useMask)
 | 
						|
        matcher.knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
 | 
						|
    else
 | 
						|
        matcher.knnMatch(cv::cuda::GpuMat(query), matches, knn);
 | 
						|
 | 
						|
    ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
    int badCount = 0;
 | 
						|
    int shift = useMask ? 1 : 0;
 | 
						|
    for (size_t i = 0; i < matches.size(); i++)
 | 
						|
    {
 | 
						|
        if ((int)matches[i].size() != knn)
 | 
						|
            badCount++;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int localBadCount = 0;
 | 
						|
            for (int k = 0; k < knn; k++)
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][k];
 | 
						|
                {
 | 
						|
                    if ((int)i < queryDescCount / 2)
 | 
						|
                    {
 | 
						|
                        if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
 | 
						|
                            localBadCount++;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
 | 
						|
                            localBadCount++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ASSERT_EQ(0, badCount);
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Single)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const float radius = 1.f / countFactor;
 | 
						|
 | 
						|
    if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
 | 
						|
    {
 | 
						|
        try
 | 
						|
        {
 | 
						|
            std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
            matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius);
 | 
						|
        }
 | 
						|
        catch (const cv::Exception& e)
 | 
						|
        {
 | 
						|
            ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cv::cuda::GpuMat mask;
 | 
						|
        if (useMask)
 | 
						|
        {
 | 
						|
            mask.create(query.rows, train.rows, CV_8UC1);
 | 
						|
            mask.setTo(cv::Scalar::all(1));
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
        matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius, mask);
 | 
						|
 | 
						|
        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
        int badCount = 0;
 | 
						|
        for (size_t i = 0; i < matches.size(); i++)
 | 
						|
        {
 | 
						|
            if ((int)matches[i].size() != 1)
 | 
						|
                badCount++;
 | 
						|
            else
 | 
						|
            {
 | 
						|
                cv::DMatch match = matches[i][0];
 | 
						|
                if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
 | 
						|
                    badCount++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_EQ(0, badCount);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
 | 
						|
{
 | 
						|
    cv::cuda::BFMatcher_CUDA matcher(normCode);
 | 
						|
 | 
						|
    const int n = 3;
 | 
						|
    const float radius = 1.f / countFactor * n;
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_train(train);
 | 
						|
 | 
						|
    // make add() twice to test such case
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
 | 
						|
    matcher.add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
 | 
						|
 | 
						|
    // prepare masks (make first nearest match illegal)
 | 
						|
    std::vector<cv::cuda::GpuMat> masks(2);
 | 
						|
    for (int mi = 0; mi < 2; mi++)
 | 
						|
    {
 | 
						|
        masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
 | 
						|
        for (int di = 0; di < queryDescCount / 2; di++)
 | 
						|
            masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
 | 
						|
    {
 | 
						|
        try
 | 
						|
        {
 | 
						|
            std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
            matcher.radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
 | 
						|
        }
 | 
						|
        catch (const cv::Exception& e)
 | 
						|
        {
 | 
						|
            ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        std::vector< std::vector<cv::DMatch> > matches;
 | 
						|
 | 
						|
        if (useMask)
 | 
						|
            matcher.radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
 | 
						|
        else
 | 
						|
            matcher.radiusMatch(cv::cuda::GpuMat(query), matches, radius);
 | 
						|
 | 
						|
        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
 | 
						|
 | 
						|
        int badCount = 0;
 | 
						|
        int shift = useMask ? 1 : 0;
 | 
						|
        int needMatchCount = useMask ? n-1 : n;
 | 
						|
        for (size_t i = 0; i < matches.size(); i++)
 | 
						|
        {
 | 
						|
            if ((int)matches[i].size() != needMatchCount)
 | 
						|
                badCount++;
 | 
						|
            else
 | 
						|
            {
 | 
						|
                int localBadCount = 0;
 | 
						|
                for (int k = 0; k < needMatchCount; k++)
 | 
						|
                {
 | 
						|
                    cv::DMatch match = matches[i][k];
 | 
						|
                    {
 | 
						|
                        if ((int)i < queryDescCount / 2)
 | 
						|
                        {
 | 
						|
                            if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
 | 
						|
                                localBadCount++;
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
 | 
						|
                                localBadCount++;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                badCount += localBadCount > 0 ? 1 : 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_EQ(0, badCount);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_Features2D, BruteForceMatcher, testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2)),
 | 
						|
    testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
 | 
						|
    testing::Values(UseMask(false), UseMask(true))));
 | 
						|
 | 
						|
#endif // HAVE_CUDA
 |