opencv/modules/ocl/src/build_warps.cpp
Alexander Smorkalov 514e97223c Some hacks to build and run OpenCL on Qualcomm S800.
Some of functions were enabled on Qualcomm S800 by changing grid size;
OpenCL kernel grid size unification for different platfroms;
Test pass rate improvements by inclreasing threshold;
Some tests were disabled for Android;
run.py was adopted for devices with brackets in in name.
2013-11-22 16:13:38 +04:00

286 lines
12 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps
void cv::ocl::buildWarpPlaneMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T,
float scale, oclMat &xmap, oclMat &ymap)
{
CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
CV_Assert((T.size() == Size(3, 1) || T.size() == Size(1, 3)) && T.type() == CV_32F && T.isContinuous());
Mat K_Rinv = K * R.t();
CV_Assert(K_Rinv.isContinuous());
Mat KRT_mat(1, 12, CV_32FC1); // 9 + 3
KRT_mat(Range::all(), Range(0, 8)) = K_Rinv.reshape(1, 1);
KRT_mat(Range::all(), Range(9, 11)) = T;
oclMat KRT_oclMat(KRT_mat);
// transfer K_Rinv and T into a single cl_mem
xmap.create(dst_roi.size(), CV_32F);
ymap.create(dst_roi.size(), CV_32F);
int tl_u = dst_roi.tl().x;
int tl_v = dst_roi.tl().y;
int xmap_step = xmap.step / xmap.elemSize(), xmap_offset = xmap.offset / xmap.elemSize();
int ymap_step = ymap.step / ymap.elemSize(), ymap_offset = ymap.offset / ymap.elemSize();
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&KRT_mat.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 };
#ifdef ANDROID
size_t localThreads[3] = {32, 4, 1};
#else
size_t localThreads[3] = {32, 8, 1};
#endif
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpPlaneMaps", globalThreads, localThreads, args, -1, -1);
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps
void cv::ocl::buildWarpCylindricalMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, float scale,
oclMat &xmap, oclMat &ymap)
{
CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
CV_Assert(K_Rinv.isContinuous());
oclMat KR_oclMat(K_Rinv.reshape(1, 1));
xmap.create(dst_roi.size(), CV_32F);
ymap.create(dst_roi.size(), CV_32F);
int tl_u = dst_roi.tl().x;
int tl_v = dst_roi.tl().y;
int xmap_step = xmap.step / xmap.elemSize(), xmap_offset = xmap.offset / xmap.elemSize();
int ymap_step = ymap.step / ymap.elemSize(), ymap_offset = ymap.offset / ymap.elemSize();
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&KR_oclMat.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 };
#ifdef ANDROID
size_t localThreads[3] = {32, 1, 1};
#else
size_t localThreads[3] = {32, 8, 1};
#endif
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpCylindricalMaps", globalThreads, localThreads, args, -1, -1);
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps
void cv::ocl::buildWarpSphericalMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, float scale,
oclMat &xmap, oclMat &ymap)
{
CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
CV_Assert(K_Rinv.isContinuous());
oclMat KR_oclMat(K_Rinv.reshape(1, 1));
// transfer K_Rinv, R_Kinv into a single cl_mem
xmap.create(dst_roi.size(), CV_32F);
ymap.create(dst_roi.size(), CV_32F);
int tl_u = dst_roi.tl().x;
int tl_v = dst_roi.tl().y;
int xmap_step = xmap.step / xmap.elemSize(), xmap_offset = xmap.offset / xmap.elemSize();
int ymap_step = ymap.step / ymap.elemSize(), ymap_offset = ymap.offset / ymap.elemSize();
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&KR_oclMat.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u));
args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 };
#ifdef ANDROID
size_t localThreads[3] = {32, 4, 1};
#else
size_t localThreads[3] = {32, 8, 1};
#endif
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpSphericalMaps", globalThreads, localThreads, args, -1, -1);
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpAffineMaps
void cv::ocl::buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap)
{
CV_Assert(M.rows == 2 && M.cols == 3);
CV_Assert(dsize.area());
xmap.create(dsize, CV_32FC1);
ymap.create(dsize, CV_32FC1);
float coeffs[2 * 3];
Mat coeffsMat(2, 3, CV_32F, (void *)coeffs);
if (inverse)
M.convertTo(coeffsMat, coeffsMat.type());
else
{
cv::Mat iM;
invertAffineTransform(M, iM);
iM.convertTo(coeffsMat, coeffsMat.type());
}
int xmap_step = xmap.step / xmap.elemSize(), xmap_offset = xmap.offset / xmap.elemSize();
int ymap_step = ymap.step / ymap.elemSize(), ymap_offset = ymap.offset / ymap.elemSize();
oclMat coeffsOclMat(coeffsMat.reshape(1, 1));
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&coeffsOclMat.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 };
#ifdef ANDROID
size_t localThreads[3] = {32, 4, 1};
#else
size_t localThreads[3] = {32, 8, 1};
#endif
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpAffineMaps", globalThreads, localThreads, args, -1, -1);
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpPerspectiveMaps
void cv::ocl::buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap)
{
CV_Assert(M.rows == 3 && M.cols == 3);
CV_Assert(dsize.area() > 0);
xmap.create(dsize, CV_32FC1);
ymap.create(dsize, CV_32FC1);
float coeffs[3 * 3];
Mat coeffsMat(3, 3, CV_32F, (void *)coeffs);
if (inverse)
M.convertTo(coeffsMat, coeffsMat.type());
else
{
cv::Mat iM;
invert(M, iM);
iM.convertTo(coeffsMat, coeffsMat.type());
}
oclMat coeffsOclMat(coeffsMat.reshape(1, 1));
int xmap_step = xmap.step / xmap.elemSize(), xmap_offset = xmap.offset / xmap.elemSize();
int ymap_step = ymap.step / ymap.elemSize(), ymap_offset = ymap.offset / ymap.elemSize();
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&coeffsOclMat.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 };
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpPerspectiveMaps", globalThreads, NULL, args, -1, -1);
}