 2b106db02f
			
		
	
	2b106db02f
	
	
	
		
			
			Also fixed some typos and code alignment Also adapted tutorial CPP samples Fixed some identation problems
		
			
				
	
	
		
			277 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			277 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| //============================================================================
 | |
| // Name        : OpenEXRimages_HDR_Retina_toneMapping.cpp
 | |
| // Author      : Alexandre Benoit (benoit.alexandre.vision@gmail.com)
 | |
| // Version     : 0.1
 | |
| // Copyright   : Alexandre Benoit, LISTIC Lab, july 2011
 | |
| // Description : HighDynamicRange retina tone mapping with the help of the Gipsa/Listic's retina in C++, Ansi-style
 | |
| //============================================================================
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "opencv2/opencv.hpp"
 | |
| 
 | |
| static void help(std::string errorMessage)
 | |
| {
 | |
|     std::cout<<"Program init error : "<<errorMessage<<std::endl;
 | |
|     std::cout<<"\nProgram call procedure : ./OpenEXRimages_HDR_Retina_toneMapping [OpenEXR image to process]"<<std::endl;
 | |
|     std::cout<<"\t[OpenEXR image to process] : the input HDR image to process, must be an OpenEXR format, see http://www.openexr.com/ to get some samples or create your own using camera bracketing and Photoshop or equivalent software for OpenEXR image synthesis"<<std::endl;
 | |
|     std::cout<<"\nExamples:"<<std::endl;
 | |
|     std::cout<<"\t-Image processing : ./OpenEXRimages_HDR_Retina_toneMapping memorial.exr"<<std::endl;
 | |
| }
 | |
| 
 | |
| // simple procedure for 1D curve tracing
 | |
| static void drawPlot(const cv::Mat curve, const std::string figureTitle, const int lowerLimit, const int upperLimit)
 | |
| {
 | |
|     //std::cout<<"curve size(h,w) = "<<curve.size().height<<", "<<curve.size().width<<std::endl;
 | |
|     cv::Mat displayedCurveImage = cv::Mat::ones(200, curve.size().height, CV_8U);
 | |
| 
 | |
|     cv::Mat windowNormalizedCurve;
 | |
|     normalize(curve, windowNormalizedCurve, 0, 200, CV_MINMAX, CV_32F);
 | |
| 
 | |
|     displayedCurveImage = cv::Scalar::all(255); // set a white background
 | |
|     int binW = cvRound((double)displayedCurveImage.cols/curve.size().height);
 | |
| 
 | |
|     for( int i = 0; i < curve.size().height; i++ )
 | |
|         rectangle( displayedCurveImage, cv::Point(i*binW, displayedCurveImage.rows),
 | |
|                 cv::Point((i+1)*binW, displayedCurveImage.rows - cvRound(windowNormalizedCurve.at<float>(i))),
 | |
|                 cv::Scalar::all(0), -1, 8, 0 );
 | |
|     rectangle( displayedCurveImage, cv::Point(0, 0),
 | |
|             cv::Point((lowerLimit)*binW, 200),
 | |
|             cv::Scalar::all(128), -1, 8, 0 );
 | |
|     rectangle( displayedCurveImage, cv::Point(displayedCurveImage.cols, 0),
 | |
|             cv::Point((upperLimit)*binW, 200),
 | |
|             cv::Scalar::all(128), -1, 8, 0 );
 | |
| 
 | |
|     cv::imshow(figureTitle, displayedCurveImage);
 | |
| }
 | |
| /*
 | |
|  * objective : get the gray level map of the input image and rescale it to the range [0-255]
 | |
|  */
 | |
|  static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit)
 | |
|  {
 | |
| 
 | |
|      // adjust output matrix wrt the input size but single channel
 | |
|      std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"<<std::endl;
 | |
|      //std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
 | |
|      //std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;
 | |
| 
 | |
|      // rescale between 0-255, keeping floating point values
 | |
|      cv::normalize(inputMat, outputMat, 0.0, 255.0, cv::NORM_MINMAX);
 | |
| 
 | |
|      // extract a 8bit image that will be used for histogram edge cut
 | |
|      cv::Mat intGrayImage;
 | |
|      if (inputMat.channels()==1)
 | |
|      {
 | |
|          outputMat.convertTo(intGrayImage, CV_8U);
 | |
|      }else
 | |
|      {
 | |
|          cv::Mat rgbIntImg;
 | |
|          outputMat.convertTo(rgbIntImg, CV_8UC3);
 | |
|          cvtColor(rgbIntImg, intGrayImage, cv::COLOR_BGR2GRAY);
 | |
|      }
 | |
| 
 | |
|      // get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
 | |
|      cv::Mat dst, hist;
 | |
|      int histSize = 256;
 | |
|      calcHist(&intGrayImage, 1, 0, cv::Mat(), hist, 1, &histSize, 0);
 | |
|      cv::Mat normalizedHist;
 | |
|      normalize(hist, normalizedHist, 1, 0, cv::NORM_L1, CV_32F); // normalize histogram so that its sum equals 1
 | |
| 
 | |
|      double min_val, max_val;
 | |
|      CvMat histArr(normalizedHist);
 | |
|      cvMinMaxLoc(&histArr, &min_val, &max_val);
 | |
|      //std::cout<<"Hist max,min = "<<max_val<<", "<<min_val<<std::endl;
 | |
| 
 | |
|      // compute density probability
 | |
|      cv::Mat denseProb=cv::Mat::zeros(normalizedHist.size(), CV_32F);
 | |
|      denseProb.at<float>(0)=normalizedHist.at<float>(0);
 | |
|      int histLowerLimit=0, histUpperLimit=0;
 | |
|      for (int i=1;i<normalizedHist.size().height;++i)
 | |
|      {
 | |
|          denseProb.at<float>(i)=denseProb.at<float>(i-1)+normalizedHist.at<float>(i);
 | |
|          //std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
 | |
|          if ( denseProb.at<float>(i)<histogramClippingLimit)
 | |
|              histLowerLimit=i;
 | |
|          if ( denseProb.at<float>(i)<1-histogramClippingLimit)
 | |
|              histUpperLimit=i;
 | |
|      }
 | |
|      // deduce min and max admitted gray levels
 | |
|      float minInputValue = (float)histLowerLimit/histSize*255;
 | |
|      float maxInputValue = (float)histUpperLimit/histSize*255;
 | |
| 
 | |
|      std::cout<<"=> Histogram limits "
 | |
|              <<"\n\t"<<histogramClippingLimit*100<<"% index = "<<histLowerLimit<<" => normalizedHist value = "<<denseProb.at<float>(histLowerLimit)<<" => input gray level = "<<minInputValue
 | |
|              <<"\n\t"<<(1-histogramClippingLimit)*100<<"% index = "<<histUpperLimit<<" => normalizedHist value = "<<denseProb.at<float>(histUpperLimit)<<" => input gray level = "<<maxInputValue
 | |
|              <<std::endl;
 | |
|      //drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
 | |
|      drawPlot(normalizedHist, "input histogram", histLowerLimit, histUpperLimit);
 | |
| 
 | |
|      // rescale image range [minInputValue-maxInputValue] to [0-255]
 | |
|      outputMat-=minInputValue;
 | |
|      outputMat*=255.0/(maxInputValue-minInputValue);
 | |
|      // cut original histogram and back project to original image
 | |
|      cv::threshold( outputMat, outputMat, 255.0, 255.0, 2 ); //THRESH_TRUNC, clips values above 255
 | |
|      cv::threshold( outputMat, outputMat, 0.0, 0.0, 3 ); //THRESH_TOZERO, clips values under 0
 | |
| 
 | |
|  }
 | |
|  // basic callback method for interface management
 | |
|  cv::Mat inputImage;
 | |
|  cv::Mat imageInputRescaled;
 | |
|  int histogramClippingValue;
 | |
|  static void callBack_rescaleGrayLevelMat(int, void*)
 | |
|  {
 | |
|      std::cout<<"Histogram clipping value changed, current value = "<<histogramClippingValue<<std::endl;
 | |
|      rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)(histogramClippingValue/100.0));
 | |
|      normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX);
 | |
|  }
 | |
| 
 | |
|  cv::Ptr<cv::Retina> retina;
 | |
|  int retinaHcellsGain;
 | |
|  int localAdaptation_photoreceptors, localAdaptation_Gcells;
 | |
|  static void callBack_updateRetinaParams(int, void*)
 | |
|  {
 | |
|      retina->setupOPLandIPLParvoChannel(true, true, (float)(localAdaptation_photoreceptors/200.0), 0.5f, 0.43f, (float)retinaHcellsGain, 1.f, 7.f, (float)(localAdaptation_Gcells/200.0));
 | |
|  }
 | |
| 
 | |
|  int colorSaturationFactor;
 | |
|  static void callback_saturateColors(int, void*)
 | |
|  {
 | |
|      retina->setColorSaturation(true, (float)colorSaturationFactor);
 | |
|  }
 | |
| 
 | |
|  int main(int argc, char* argv[]) {
 | |
|      // welcome message
 | |
|      std::cout<<"*********************************************************************************"<<std::endl;
 | |
|      std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
 | |
|      std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
 | |
|      std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
 | |
|      std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
 | |
|      std::cout<<"* The retina model still have the following properties:"<<std::endl;
 | |
|      std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
 | |
|      std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
 | |
|      std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
 | |
|      std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
 | |
|      std::cout<<"* for more information, reer to the following papers :"<<std::endl;
 | |
|      std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
 | |
|      std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
 | |
|      std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl;
 | |
|      std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
 | |
|      std::cout<<"*********************************************************************************"<<std::endl;
 | |
|      std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
 | |
|      std::cout<<"*********************************************************************************"<<std::endl;
 | |
|      std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
 | |
|      std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
 | |
|      std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
 | |
|      std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
 | |
|      std::cout<<"*********************************************************************************"<<std::endl;
 | |
| 
 | |
|      // basic input arguments checking
 | |
|      if (argc<2)
 | |
|      {
 | |
|          help("bad number of parameter");
 | |
|          return -1;
 | |
|      }
 | |
| 
 | |
|      bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
 | |
| 
 | |
|      std::string inputImageName=argv[1];
 | |
| 
 | |
|      //////////////////////////////////////////////////////////////////////////////
 | |
|      // checking input media type (still image, video file, live video acquisition)
 | |
|      std::cout<<"RetinaDemo: processing image "<<inputImageName<<std::endl;
 | |
|      // image processing case
 | |
|      // declare the retina input buffer... that will be fed differently in regard of the input media
 | |
|      inputImage = cv::imread(inputImageName, -1); // load image in RGB mode
 | |
|      std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl;
 | |
|      if (!inputImage.total())
 | |
|      {
 | |
|         help("could not load image, program end");
 | |
|             return -1;
 | |
|          }
 | |
|      // rescale between 0 and 1
 | |
|      normalize(inputImage, inputImage, 0.0, 1.0, cv::NORM_MINMAX);
 | |
|      cv::Mat gammaTransformedImage;
 | |
|      cv::pow(inputImage, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
 | |
|      imshow("EXR image original image, 16bits=>8bits linear rescaling ", inputImage);
 | |
|      imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage);
 | |
|      if (inputImage.empty())
 | |
|      {
 | |
|          help("Input image could not be loaded, aborting");
 | |
|          return -1;
 | |
|      }
 | |
| 
 | |
|      //////////////////////////////////////////////////////////////////////////////
 | |
|      // Program start in a try/catch safety context (Retina may throw errors)
 | |
|      try
 | |
|      {
 | |
|          /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
 | |
|           * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
 | |
|           */
 | |
|          if (useLogSampling)
 | |
|                 {
 | |
|                      retina = new cv::Retina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
 | |
|                  }
 | |
|          else// -> else allocate "classical" retina :
 | |
|              retina = new cv::Retina(inputImage.size());
 | |
| 
 | |
|         // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
 | |
|         retina->write("RetinaDefaultParameters.xml");
 | |
| 
 | |
|                  // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
 | |
|                  retina->activateMovingContoursProcessing(false);
 | |
| 
 | |
|          // declare retina output buffers
 | |
|          cv::Mat retinaOutput_parvo;
 | |
| 
 | |
|          /////////////////////////////////////////////
 | |
|          // prepare displays and interactions
 | |
|          histogramClippingValue=0; // default value... updated with interface slider
 | |
|          //inputRescaleMat = inputImage;
 | |
|          //outputRescaleMat = imageInputRescaled;
 | |
|          cv::namedWindow("Retina input image (with cut edges histogram for basic pixels error avoidance)",1);
 | |
|          cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);
 | |
| 
 | |
|          cv::namedWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", 1);
 | |
|          colorSaturationFactor=3;
 | |
|          cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);
 | |
| 
 | |
|          retinaHcellsGain=40;
 | |
|          cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);
 | |
| 
 | |
|          localAdaptation_photoreceptors=197;
 | |
|          localAdaptation_Gcells=190;
 | |
|          cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
 | |
|          cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);
 | |
| 
 | |
| 
 | |
|          /////////////////////////////////////////////
 | |
|          // apply default parameters of user interaction variables
 | |
|          rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100);
 | |
|          retina->setColorSaturation(true,(float)colorSaturationFactor);
 | |
|          callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
 | |
| 
 | |
|          // processing loop with stop condition
 | |
|          bool continueProcessing=true;
 | |
|          while(continueProcessing)
 | |
|          {
 | |
|              // run retina filter
 | |
|              retina->run(imageInputRescaled);
 | |
|              // Retrieve and display retina output
 | |
|              retina->getParvo(retinaOutput_parvo);
 | |
|              cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0);
 | |
|              cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo);
 | |
|              cv::waitKey(10);
 | |
|          }
 | |
|      }catch(cv::Exception e)
 | |
|      {
 | |
|          std::cerr<<"Error using Retina : "<<e.what()<<std::endl;
 | |
|      }
 | |
| 
 | |
|      // Program end message
 | |
|      std::cout<<"Retina demo end"<<std::endl;
 | |
| 
 | |
|      return 0;
 | |
|  }
 |