opencv/modules/objdetect/src/cascadedetect.hpp
2014-01-18 01:31:33 +04:00

698 lines
24 KiB
C++

#pragma once
namespace cv
{
class CascadeClassifierImpl : public BaseCascadeClassifier
{
public:
CascadeClassifierImpl();
virtual ~CascadeClassifierImpl();
bool empty() const;
bool load( const String& filename );
void read( const FileNode& node );
bool read_( const FileNode& node );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size() );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& numDetections,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
CV_OUT std::vector<double>& levelWeights,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size(),
bool outputRejectLevels = false );
bool isOldFormatCascade() const;
Size getOriginalWindowSize() const;
int getFeatureType() const;
void* getOldCascade();
void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator);
Ptr<MaskGenerator> getMaskGenerator();
protected:
enum { SUM_ALIGN = 64 };
bool detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
Size sumSize0, bool outputRejectLevels = false );
bool ocl_detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, Size sumSize0 );
void detectMultiScaleNoGrouping( InputArray image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false );
enum { MAX_FACES = 10000 };
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH
};
friend class CascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );
class Data
{
public:
struct DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct DTree
{
int nodeCount;
};
struct Stage
{
int first;
int ntrees;
float threshold;
};
struct Stump
{
Stump() { }
Stump(int _featureIdx, float _threshold, float _left, float _right)
: featureIdx(_featureIdx), threshold(_threshold), left(_left), right(_right) {}
int featureIdx;
float threshold;
float left;
float right;
};
Data();
bool read(const FileNode &node);
bool isStumpBased() const { return maxNodesPerTree == 1; }
int stageType;
int featureType;
int ncategories;
int maxNodesPerTree;
Size origWinSize;
std::vector<Stage> stages;
std::vector<DTree> classifiers;
std::vector<DTreeNode> nodes;
std::vector<float> leaves;
std::vector<int> subsets;
std::vector<Stump> stumps;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
Ptr<MaskGenerator> maskGenerator;
UMat ugrayImage, uimageBuffer;
UMat ufacepos, ustages, ustumps, usubsets;
ocl::Kernel haarKernel, lbpKernel;
bool tryOpenCL;
Mutex mtx;
};
#define CC_CASCADE_PARAMS "cascadeParams"
#define CC_STAGE_TYPE "stageType"
#define CC_FEATURE_TYPE "featureType"
#define CC_HEIGHT "height"
#define CC_WIDTH "width"
#define CC_STAGE_NUM "stageNum"
#define CC_STAGES "stages"
#define CC_STAGE_PARAMS "stageParams"
#define CC_BOOST "BOOST"
#define CC_MAX_DEPTH "maxDepth"
#define CC_WEAK_COUNT "maxWeakCount"
#define CC_STAGE_THRESHOLD "stageThreshold"
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
#define CC_INTERNAL_NODES "internalNodes"
#define CC_LEAF_VALUES "leafValues"
#define CC_FEATURES "features"
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT "maxCatCount"
#define CC_HAAR "HAAR"
#define CC_RECTS "rects"
#define CC_TILTED "tilted"
#define CC_LBP "LBP"
#define CC_RECT "rect"
#define CC_HOG "HOG"
#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x + w, y) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_(p0, p1, p2, p3, offset) \
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
#define CV_SUM_OFS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x + w, y) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_OFS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_(p0, p1, p2, p3, offset) \
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
#define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \
((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3])
#define CALC_SUM_OFS(rect, ptr) CALC_SUM_OFS_((rect)[0], (rect)[1], (rect)[2], (rect)[3], ptr)
//---------------------------------------------- HaarEvaluator ---------------------------------------
class HaarEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
bool read( const FileNode& node );
bool tilted;
enum { RECT_NUM = 3 };
struct
{
Rect r;
float weight;
} rect[RECT_NUM];
};
struct OptFeature
{
OptFeature();
enum { RECT_NUM = Feature::RECT_NUM };
float calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step, int tofs );
int ofs[RECT_NUM][4];
float weight[4];
};
HaarEvaluator();
virtual ~HaarEvaluator();
virtual bool read( const FileNode& node );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }
virtual bool setImage(InputArray, Size origWinSize, Size sumSize);
virtual bool setWindow(Point pt);
virtual Rect getNormRect() const;
virtual void getUMats(std::vector<UMat>& bufs);
double operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin) * varianceNormFactor; }
virtual double calcOrd(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
Size origWinSize, sumSize0;
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
OptFeature* optfeaturesPtr; // optimization
bool hasTiltedFeatures;
Mat sum0, sum, sqsum0, sqsum;
UMat usum0, usum, usqsum0, usqsum, ufbuf;
Rect normrect;
int nofs[4];
const int* pwin;
double varianceNormFactor;
};
inline HaarEvaluator::Feature :: Feature()
{
tilted = false;
rect[0].r = rect[1].r = rect[2].r = Rect();
rect[0].weight = rect[1].weight = rect[2].weight = 0;
}
inline HaarEvaluator::OptFeature :: OptFeature()
{
weight[0] = weight[1] = weight[2] = 0.f;
ofs[0][0] = ofs[0][1] = ofs[0][2] = ofs[0][3] =
ofs[1][0] = ofs[1][1] = ofs[1][2] = ofs[1][3] =
ofs[2][0] = ofs[2][1] = ofs[2][2] = ofs[2][3] = 0;
}
inline float HaarEvaluator::OptFeature :: calc( const int* ptr ) const
{
float ret = weight[0] * CALC_SUM_OFS(ofs[0], ptr) +
weight[1] * CALC_SUM_OFS(ofs[1], ptr);
if( weight[2] != 0.0f )
ret += weight[2] * CALC_SUM_OFS(ofs[2], ptr);
return ret;
}
inline void HaarEvaluator::OptFeature :: setOffsets( const Feature& _f, int step, int tofs )
{
weight[0] = _f.rect[0].weight;
weight[1] = _f.rect[1].weight;
weight[2] = _f.rect[2].weight;
Rect r2 = weight[2] > 0 ? _f.rect[2].r : Rect(0,0,0,0);
if (_f.tilted)
{
CV_TILTED_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], tofs, _f.rect[0].r, step );
CV_TILTED_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], tofs, _f.rect[1].r, step );
CV_TILTED_PTRS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], tofs, r2, step );
}
else
{
CV_SUM_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], 0, _f.rect[0].r, step );
CV_SUM_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], 0, _f.rect[1].r, step );
CV_SUM_OFS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], 0, r2, step );
}
}
//---------------------------------------------- LBPEvaluator -------------------------------------
class LBPEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
Feature( int x, int y, int _block_w, int _block_h ) :
rect(x, y, _block_w, _block_h) {}
bool read(const FileNode& node );
Rect rect; // weight and height for block
};
struct OptFeature
{
OptFeature();
int calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step );
int ofs[16];
};
LBPEvaluator();
virtual ~LBPEvaluator();
virtual bool read( const FileNode& node );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::LBP; }
virtual bool setImage(InputArray image, Size _origWinSize, Size);
virtual bool setWindow(Point pt);
virtual void getUMats(std::vector<UMat>& bufs);
int operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin); }
virtual int calcCat(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
Size origWinSize, sumSize0;
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
OptFeature* optfeaturesPtr; // optimization
Mat sum0, sum;
UMat usum0, usum, ufbuf;
const int* pwin;
};
inline LBPEvaluator::Feature :: Feature()
{
rect = Rect();
}
inline LBPEvaluator::OptFeature :: OptFeature()
{
for( int i = 0; i < 16; i++ )
ofs[i] = 0;
}
inline int LBPEvaluator::OptFeature :: calc( const int* p ) const
{
int cval = CALC_SUM_OFS_( ofs[5], ofs[6], ofs[9], ofs[10], p );
return (CALC_SUM_OFS_( ofs[0], ofs[1], ofs[4], ofs[5], p ) >= cval ? 128 : 0) | // 0
(CALC_SUM_OFS_( ofs[1], ofs[2], ofs[5], ofs[6], p ) >= cval ? 64 : 0) | // 1
(CALC_SUM_OFS_( ofs[2], ofs[3], ofs[6], ofs[7], p ) >= cval ? 32 : 0) | // 2
(CALC_SUM_OFS_( ofs[6], ofs[7], ofs[10], ofs[11], p ) >= cval ? 16 : 0) | // 5
(CALC_SUM_OFS_( ofs[10], ofs[11], ofs[14], ofs[15], p ) >= cval ? 8 : 0)| // 8
(CALC_SUM_OFS_( ofs[9], ofs[10], ofs[13], ofs[14], p ) >= cval ? 4 : 0)| // 7
(CALC_SUM_OFS_( ofs[8], ofs[9], ofs[12], ofs[13], p ) >= cval ? 2 : 0)| // 6
(CALC_SUM_OFS_( ofs[4], ofs[5], ofs[8], ofs[9], p ) >= cval ? 1 : 0);
}
inline void LBPEvaluator::OptFeature :: setOffsets( const Feature& _f, int step )
{
Rect tr = _f.rect;
CV_SUM_OFS( ofs[0], ofs[1], ofs[4], ofs[5], 0, tr, step );
tr.x += 2*_f.rect.width;
CV_SUM_OFS( ofs[2], ofs[3], ofs[6], ofs[7], 0, tr, step );
tr.y += 2*_f.rect.height;
CV_SUM_OFS( ofs[10], ofs[11], ofs[14], ofs[15], 0, tr, step );
tr.x -= 2*_f.rect.width;
CV_SUM_OFS( ofs[8], ofs[9], ofs[12], ofs[13], 0, tr, step );
}
//---------------------------------------------- HOGEvaluator -------------------------------------------
class HOGEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
float calc( int offset ) const;
void updatePtrs( const std::vector<Mat>& _hist, const Mat &_normSum );
bool read( const FileNode& node );
enum { CELL_NUM = 4, BIN_NUM = 9 };
Rect rect[CELL_NUM];
int featComponent; //component index from 0 to 35
const float* pF[4]; //for feature calculation
const float* pN[4]; //for normalization calculation
};
HOGEvaluator();
virtual ~HOGEvaluator();
virtual bool read( const FileNode& node );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::HOG; }
virtual bool setImage( InputArray image, Size winSize, Size );
virtual bool setWindow( Point pt );
double operator()(int featureIdx) const
{
return featuresPtr[featureIdx].calc(offset);
}
virtual double calcOrd( int featureIdx ) const
{
return (*this)(featureIdx);
}
private:
virtual void integralHistogram( const Mat& srcImage, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;
Size origWinSize;
Ptr<std::vector<Feature> > features;
Feature* featuresPtr;
std::vector<Mat> hist;
Mat normSum;
int offset;
};
inline HOGEvaluator::Feature :: Feature()
{
rect[0] = rect[1] = rect[2] = rect[3] = Rect();
pF[0] = pF[1] = pF[2] = pF[3] = 0;
pN[0] = pN[1] = pN[2] = pN[3] = 0;
featComponent = 0;
}
inline float HOGEvaluator::Feature :: calc( int _offset ) const
{
float res = CALC_SUM(pF, _offset);
float normFactor = CALC_SUM(pN, _offset);
res = (res > 0.001f) ? (res / ( normFactor + 0.001f) ) : 0.f;
return res;
}
inline void HOGEvaluator::Feature :: updatePtrs( const std::vector<Mat> &_hist, const Mat &_normSum )
{
int binIdx = featComponent % BIN_NUM;
int cellIdx = featComponent / BIN_NUM;
Rect normRect = Rect( rect[0].x, rect[0].y, 2*rect[0].width, 2*rect[0].height );
const float* featBuf = (const float*)_hist[binIdx].data;
size_t featStep = _hist[0].step / sizeof(featBuf[0]);
const float* normBuf = (const float*)_normSum.data;
size_t normStep = _normSum.step / sizeof(normBuf[0]);
CV_SUM_PTRS( pF[0], pF[1], pF[2], pF[3], featBuf, rect[cellIdx], featStep );
CV_SUM_PTRS( pN[0], pN[1], pN[2], pN[3], normBuf, normRect, normStep );
}
//---------------------------------------------- predictor functions -------------------------------------
template<class FEval>
inline int predictOrdered( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
double val = featureEvaluator(node.featureIdx);
idx = val < node.threshold ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictCategorical( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
int* cascadeSubsets = &cascade.data.subsets[0];
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for(int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
int c = featureEvaluator(node.featureIdx);
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictOrderedStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_Assert(!cascade.data.stumps.empty());
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
int nstages = (int)cascade.data.stages.size();
double tmp = 0;
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx];
tmp = 0;
int ntrees = stage.ntrees;
for( int i = 0; i < ntrees; i++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[i];
double value = featureEvaluator(stump.featureIdx);
tmp += value < stump.threshold ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = (double)tmp;
return -stageIdx;
}
cascadeStumps += ntrees;
}
sum = (double)tmp;
return 1;
}
template<class FEval>
inline int predictCategoricalStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_Assert(!cascade.data.stumps.empty());
int nstages = (int)cascade.data.stages.size();
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
const int* cascadeSubsets = &cascade.data.subsets[0];
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
#ifdef HAVE_TEGRA_OPTIMIZATION
float tmp = 0; // float accumulator -- float operations are quicker
#else
double tmp = 0;
#endif
for( int si = 0; si < nstages; si++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
tmp = 0;
for( wi = 0; wi < ntrees; wi++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[wi];
int c = featureEvaluator(stump.featureIdx);
const int* subset = &cascadeSubsets[wi*subsetSize];
tmp += (subset[c>>5] & (1 << (c & 31))) ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = (double)tmp;
return -si;
}
cascadeStumps += ntrees;
cascadeSubsets += ntrees*subsetSize;
}
sum = (double)tmp;
return 1;
}
}