629 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			629 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // BroxOpticalFlow
 | |
| 
 | |
| //#define BROX_DUMP
 | |
| 
 | |
| struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(BroxOpticalFlow, Regression)
 | |
| {
 | |
|     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
 | |
|                                   10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
 | |
| 
 | |
|     cv::gpu::GpuMat u;
 | |
|     cv::gpu::GpuMat v;
 | |
|     brox(loadMat(frame0), loadMat(frame1), u, v);
 | |
| 
 | |
|     std::string fname(cvtest::TS::ptr()->get_data_path());
 | |
|     if (devInfo.majorVersion() >= 2)
 | |
|         fname += "opticalflow/brox_optical_flow_cc20.bin";
 | |
|     else
 | |
|         fname += "opticalflow/brox_optical_flow.bin";
 | |
| 
 | |
| #ifndef BROX_DUMP
 | |
|     std::ifstream f(fname.c_str(), std::ios_base::binary);
 | |
| 
 | |
|     int rows, cols;
 | |
| 
 | |
|     f.read((char*) &rows, sizeof(rows));
 | |
|     f.read((char*) &cols, sizeof(cols));
 | |
| 
 | |
|     cv::Mat u_gold(rows, cols, CV_32FC1);
 | |
| 
 | |
|     for (int i = 0; i < u_gold.rows; ++i)
 | |
|         f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
 | |
| 
 | |
|     cv::Mat v_gold(rows, cols, CV_32FC1);
 | |
| 
 | |
|     for (int i = 0; i < v_gold.rows; ++i)
 | |
|         f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(u_gold, u, 1e-3);
 | |
|     EXPECT_MAT_SIMILAR(v_gold, v, 1e-3);
 | |
| #else
 | |
|     std::ofstream f(fname.c_str(), std::ios_base::binary);
 | |
| 
 | |
|     f.write((char*) &u.rows, sizeof(u.rows));
 | |
|     f.write((char*) &u.cols, sizeof(u.cols));
 | |
| 
 | |
|     cv::Mat h_u(u);
 | |
|     cv::Mat h_v(v);
 | |
| 
 | |
|     for (int i = 0; i < u.rows; ++i)
 | |
|         f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < v.rows; ++i)
 | |
|         f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(BroxOpticalFlow, OpticalFlowNan)
 | |
| {
 | |
|     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Mat r_frame0, r_frame1;
 | |
|     cv::resize(frame0, r_frame0, cv::Size(1380,1000));
 | |
|     cv::resize(frame1, r_frame1, cv::Size(1380,1000));
 | |
| 
 | |
|     cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
 | |
|                                   5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
 | |
| 
 | |
|     cv::gpu::GpuMat u;
 | |
|     cv::gpu::GpuMat v;
 | |
|     brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
 | |
| 
 | |
|     cv::Mat h_u, h_v;
 | |
|     u.download(h_u);
 | |
|     v.download(h_v);
 | |
| 
 | |
|     EXPECT_TRUE(cv::checkRange(h_u));
 | |
|     EXPECT_TRUE(cv::checkRange(h_v));
 | |
| };
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // GoodFeaturesToTrack
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(MinDistance, double)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     double minDistance;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         minDistance = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(GoodFeaturesToTrack, Accuracy)
 | |
| {
 | |
|     cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     int maxCorners = 1000;
 | |
|     double qualityLevel = 0.01;
 | |
| 
 | |
|     cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
 | |
| 
 | |
|     cv::gpu::GpuMat d_pts;
 | |
|     detector(loadMat(image), d_pts);
 | |
| 
 | |
|     ASSERT_FALSE(d_pts.empty());
 | |
| 
 | |
|     std::vector<cv::Point2f> pts(d_pts.cols);
 | |
|     cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]);
 | |
|     d_pts.download(pts_mat);
 | |
| 
 | |
|     std::vector<cv::Point2f> pts_gold;
 | |
|     cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
 | |
| 
 | |
|     ASSERT_EQ(pts_gold.size(), pts.size());
 | |
| 
 | |
|     size_t mistmatch = 0;
 | |
|     for (size_t i = 0; i < pts.size(); ++i)
 | |
|     {
 | |
|         cv::Point2i a = pts_gold[i];
 | |
|         cv::Point2i b = pts[i];
 | |
| 
 | |
|         bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
 | |
| 
 | |
|         if (!eq)
 | |
|             ++mistmatch;
 | |
|     }
 | |
| 
 | |
|     double bad_ratio = static_cast<double>(mistmatch) / pts.size();
 | |
| 
 | |
|     ASSERT_LE(bad_ratio, 0.01);
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners)
 | |
| {
 | |
|     int maxCorners = 1000;
 | |
|     double qualityLevel = 0.01;
 | |
| 
 | |
|     cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
 | |
| 
 | |
|     cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
 | |
|     cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2);
 | |
| 
 | |
|     detector(src, corners);
 | |
| 
 | |
|     ASSERT_TRUE(corners.empty());
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MinDistance(0.0), MinDistance(3.0))));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // PyrLKOpticalFlow
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(UseGray, bool)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     bool useGray;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         useGray = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(PyrLKOpticalFlow, Sparse)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Mat gray_frame;
 | |
|     if (useGray)
 | |
|         gray_frame = frame0;
 | |
|     else
 | |
|         cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
 | |
| 
 | |
|     std::vector<cv::Point2f> pts;
 | |
|     cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
 | |
| 
 | |
|     cv::gpu::GpuMat d_pts;
 | |
|     cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
 | |
|     d_pts.upload(pts_mat);
 | |
| 
 | |
|     cv::gpu::PyrLKOpticalFlow pyrLK;
 | |
| 
 | |
|     cv::gpu::GpuMat d_nextPts;
 | |
|     cv::gpu::GpuMat d_status;
 | |
|     pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
 | |
| 
 | |
|     std::vector<cv::Point2f> nextPts(d_nextPts.cols);
 | |
|     cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
 | |
|     d_nextPts.download(nextPts_mat);
 | |
| 
 | |
|     std::vector<unsigned char> status(d_status.cols);
 | |
|     cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
 | |
|     d_status.download(status_mat);
 | |
| 
 | |
|     std::vector<cv::Point2f> nextPts_gold;
 | |
|     std::vector<unsigned char> status_gold;
 | |
|     cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
 | |
| 
 | |
|     ASSERT_EQ(nextPts_gold.size(), nextPts.size());
 | |
|     ASSERT_EQ(status_gold.size(), status.size());
 | |
| 
 | |
|     size_t mistmatch = 0;
 | |
|     for (size_t i = 0; i < nextPts.size(); ++i)
 | |
|     {
 | |
|         cv::Point2i a = nextPts[i];
 | |
|         cv::Point2i b = nextPts_gold[i];
 | |
| 
 | |
|         if (status[i] != status_gold[i])
 | |
|         {
 | |
|             ++mistmatch;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (status[i])
 | |
|         {
 | |
|             bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
 | |
| 
 | |
|             if (!eq)
 | |
|                 ++mistmatch;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
 | |
| 
 | |
|     ASSERT_LE(bad_ratio, 0.01);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(UseGray(true), UseGray(false))));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // FarnebackOpticalFlow
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(PyrScale, double)
 | |
|     IMPLEMENT_PARAM_CLASS(PolyN, int)
 | |
|     CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
 | |
|     IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     double pyrScale;
 | |
|     int polyN;
 | |
|     int flags;
 | |
|     bool useInitFlow;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         pyrScale = GET_PARAM(1);
 | |
|         polyN = GET_PARAM(2);
 | |
|         flags = GET_PARAM(3);
 | |
|         useInitFlow = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(FarnebackOpticalFlow, Accuracy)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     double polySigma = polyN <= 5 ? 1.1 : 1.5;
 | |
| 
 | |
|     cv::gpu::FarnebackOpticalFlow farn;
 | |
|     farn.pyrScale = pyrScale;
 | |
|     farn.polyN = polyN;
 | |
|     farn.polySigma = polySigma;
 | |
|     farn.flags = flags;
 | |
| 
 | |
|     cv::gpu::GpuMat d_flowx, d_flowy;
 | |
|     farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
 | |
| 
 | |
|     cv::Mat flow;
 | |
|     if (useInitFlow)
 | |
|     {
 | |
|         cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
 | |
|         cv::merge(flowxy, 2, flow);
 | |
| 
 | |
|         farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
 | |
|         farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
 | |
|     }
 | |
| 
 | |
|     cv::calcOpticalFlowFarneback(
 | |
|         frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
 | |
|         farn.numIters, farn.polyN, farn.polySigma, farn.flags);
 | |
| 
 | |
|     std::vector<cv::Mat> flowxy;
 | |
|     cv::split(flow, flowxy);
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
 | |
|     EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
 | |
|     testing::Values(PolyN(5), PolyN(7)),
 | |
|     testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
 | |
|     testing::Values(UseInitFlow(false), UseInitFlow(true))));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // OpticalFlowDual_TVL1
 | |
| 
 | |
| PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         useRoi = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
 | |
|     cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
 | |
|     cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
 | |
|     d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
 | |
| 
 | |
|     cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
 | |
|     cv::Mat flow;
 | |
|     alg->calc(frame0, frame1, flow);
 | |
|     cv::Mat gold[2];
 | |
|     cv::split(flow, gold);
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
 | |
|     EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // OpticalFlowBM
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
 | |
|                            cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
 | |
|                            cv::Mat& velx, cv::Mat& vely)
 | |
|     {
 | |
|         cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
 | |
| 
 | |
|         velx.create(sz, CV_32FC1);
 | |
|         vely.create(sz, CV_32FC1);
 | |
| 
 | |
|         CvMat cvprev = prev;
 | |
|         CvMat cvcurr = curr;
 | |
| 
 | |
|         CvMat cvvelx = velx;
 | |
|         CvMat cvvely = vely;
 | |
| 
 | |
|         cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(OpticalFlowBM, Accuracy)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo = GetParam();
 | |
|     cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
|     cv::resize(frame0, frame0, cv::Size(), 0.5, 0.5);
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
|     cv::resize(frame1, frame1, cv::Size(), 0.5, 0.5);
 | |
| 
 | |
|     cv::Size block_size(8, 8);
 | |
|     cv::Size shift_size(1, 1);
 | |
|     cv::Size max_range(8, 8);
 | |
| 
 | |
|     cv::gpu::GpuMat d_velx, d_vely, buf;
 | |
|     cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
 | |
|                                block_size, shift_size, max_range, false,
 | |
|                                d_velx, d_vely, buf);
 | |
| 
 | |
|     cv::Mat velx, vely;
 | |
|     calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(velx, d_velx, 1e-6);
 | |
|     EXPECT_MAT_NEAR(vely, d_vely, 1e-6);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // FastOpticalFlowBM
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
 | |
|     {
 | |
|         velx.create(I0.size());
 | |
|         vely.create(I0.size());
 | |
| 
 | |
|         int search_radius = search_window / 2;
 | |
|         int block_radius = block_window / 2;
 | |
| 
 | |
|         for (int y = 0; y < I0.rows; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < I0.cols; ++x)
 | |
|             {
 | |
|                 int bestDist = std::numeric_limits<int>::max();
 | |
|                 int bestDx = 0;
 | |
|                 int bestDy = 0;
 | |
| 
 | |
|                 for (int dy = -search_radius; dy <= search_radius; ++dy)
 | |
|                 {
 | |
|                     for (int dx = -search_radius; dx <= search_radius; ++dx)
 | |
|                     {
 | |
|                         int dist = 0;
 | |
| 
 | |
|                         for (int by = -block_radius; by <= block_radius; ++by)
 | |
|                         {
 | |
|                             for (int bx = -block_radius; bx <= block_radius; ++bx)
 | |
|                             {
 | |
|                                 int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
 | |
|                                 int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
 | |
| 
 | |
|                                 dist += std::abs(I0_val - I1_val);
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         if (dist < bestDist)
 | |
|                         {
 | |
|                             bestDist = dist;
 | |
|                             bestDx = dx;
 | |
|                             bestDy = dy;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 velx(y, x) = (float) bestDx;
 | |
|                 vely(y, x) = (float) bestDy;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
 | |
|     {
 | |
|         double sum = 0.0;
 | |
| 
 | |
|         for (int y = 0; y < flow1.rows; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < flow1.cols; ++x)
 | |
|             {
 | |
|                 double diff = flow1(y, x) - flow2(y, x);
 | |
|                 sum += diff * diff;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return std::sqrt(sum / flow1.size().area());
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(FastOpticalFlowBM, Accuracy)
 | |
| {
 | |
|     const double MAX_RMSE = 0.6;
 | |
| 
 | |
|     int search_window = 15;
 | |
|     int block_window = 5;
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo = GetParam();
 | |
|     cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Size smallSize(320, 240);
 | |
|     cv::Mat frame0_small;
 | |
|     cv::Mat frame1_small;
 | |
| 
 | |
|     cv::resize(frame0, frame0_small, smallSize);
 | |
|     cv::resize(frame1, frame1_small, smallSize);
 | |
| 
 | |
|     cv::gpu::GpuMat d_flowx;
 | |
|     cv::gpu::GpuMat d_flowy;
 | |
|     cv::gpu::FastOpticalFlowBM fastBM;
 | |
| 
 | |
|     fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
 | |
| 
 | |
|     cv::Mat_<float> flowx;
 | |
|     cv::Mat_<float> flowy;
 | |
|     FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
 | |
| 
 | |
|     double err;
 | |
| 
 | |
|     err = calc_rmse(flowx, cv::Mat(d_flowx));
 | |
|     EXPECT_LE(err, MAX_RMSE);
 | |
| 
 | |
|     err = calc_rmse(flowy, cv::Mat(d_flowy));
 | |
|     EXPECT_LE(err, MAX_RMSE);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
