3443 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3443 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHMATRIX_H
 | |
| #define INCLUDED_IMATHMATRIX_H
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| //
 | |
| //      2D (3x3) and 3D (4x4) transformation matrix templates.
 | |
| //
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| #include "ImathPlatform.h"
 | |
| #include "ImathFun.h"
 | |
| #include "ImathExc.h"
 | |
| #include "ImathVec.h"
 | |
| #include "ImathShear.h"
 | |
| 
 | |
| #include <cstring>
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <string.h>
 | |
| 
 | |
| #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
 | |
| // suppress exception specification warnings
 | |
| #pragma warning(disable:4290)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| enum Uninitialized {UNINITIALIZED};
 | |
| 
 | |
| 
 | |
| template <class T> class Matrix33
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------------
 | |
|     // Access to elements
 | |
|     //-------------------
 | |
| 
 | |
|     T           x[3][3];
 | |
| 
 | |
|     T *         operator [] (int i);
 | |
|     const T *   operator [] (int i) const;
 | |
| 
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     Matrix33 (Uninitialized) {}
 | |
| 
 | |
|     Matrix33 ();
 | |
|                                 // 1 0 0
 | |
|                                 // 0 1 0
 | |
|                                 // 0 0 1
 | |
| 
 | |
|     Matrix33 (T a);
 | |
|                                 // a a a
 | |
|                                 // a a a
 | |
|                                 // a a a
 | |
| 
 | |
|     Matrix33 (const T a[3][3]);
 | |
|                                 // a[0][0] a[0][1] a[0][2]
 | |
|                                 // a[1][0] a[1][1] a[1][2]
 | |
|                                 // a[2][0] a[2][1] a[2][2]
 | |
| 
 | |
|     Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i);
 | |
| 
 | |
|                                 // a b c
 | |
|                                 // d e f
 | |
|                                 // g h i
 | |
| 
 | |
| 
 | |
|     //--------------------------------
 | |
|     // Copy constructor and assignment
 | |
|     //--------------------------------
 | |
| 
 | |
|     Matrix33 (const Matrix33 &v);
 | |
|     template <class S> explicit Matrix33 (const Matrix33<S> &v);
 | |
| 
 | |
|     const Matrix33 &    operator = (const Matrix33 &v);
 | |
|     const Matrix33 &    operator = (T a);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Compatibility with Sb
 | |
|     //----------------------
 | |
| 
 | |
|     T *                 getValue ();
 | |
|     const T *           getValue () const;
 | |
| 
 | |
|     template <class S>
 | |
|     void                getValue (Matrix33<S> &v) const;
 | |
|     template <class S>
 | |
|     Matrix33 &          setValue (const Matrix33<S> &v);
 | |
| 
 | |
|     template <class S>
 | |
|     Matrix33 &          setTheMatrix (const Matrix33<S> &v);
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Identity
 | |
|     //---------
 | |
| 
 | |
|     void                makeIdentity();
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Equality
 | |
|     //---------
 | |
| 
 | |
|     bool                operator == (const Matrix33 &v) const;
 | |
|     bool                operator != (const Matrix33 &v) const;
 | |
| 
 | |
|     //-----------------------------------------------------------------------
 | |
|     // Compare two matrices and test if they are "approximately equal":
 | |
|     //
 | |
|     // equalWithAbsError (m, e)
 | |
|     //
 | |
|     //      Returns true if the coefficients of this and m are the same with
 | |
|     //      an absolute error of no more than e, i.e., for all i, j
 | |
|     //
 | |
|     //      abs (this[i][j] - m[i][j]) <= e
 | |
|     //
 | |
|     // equalWithRelError (m, e)
 | |
|     //
 | |
|     //      Returns true if the coefficients of this and m are the same with
 | |
|     //      a relative error of no more than e, i.e., for all i, j
 | |
|     //
 | |
|     //      abs (this[i] - v[i][j]) <= e * abs (this[i][j])
 | |
|     //-----------------------------------------------------------------------
 | |
| 
 | |
|     bool                equalWithAbsError (const Matrix33<T> &v, T e) const;
 | |
|     bool                equalWithRelError (const Matrix33<T> &v, T e) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise addition
 | |
|     //------------------------
 | |
| 
 | |
|     const Matrix33 &    operator += (const Matrix33 &v);
 | |
|     const Matrix33 &    operator += (T a);
 | |
|     Matrix33            operator + (const Matrix33 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Component-wise subtraction
 | |
|     //---------------------------
 | |
| 
 | |
|     const Matrix33 &    operator -= (const Matrix33 &v);
 | |
|     const Matrix33 &    operator -= (T a);
 | |
|     Matrix33            operator - (const Matrix33 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Component-wise multiplication by -1
 | |
|     //------------------------------------
 | |
| 
 | |
|     Matrix33            operator - () const;
 | |
|     const Matrix33 &    negate ();
 | |
| 
 | |
| 
 | |
|     //------------------------------
 | |
|     // Component-wise multiplication
 | |
|     //------------------------------
 | |
| 
 | |
|     const Matrix33 &    operator *= (T a);
 | |
|     Matrix33            operator * (T a) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------
 | |
|     // Matrix-times-matrix multiplication
 | |
|     //-----------------------------------
 | |
| 
 | |
|     const Matrix33 &    operator *= (const Matrix33 &v);
 | |
|     Matrix33            operator * (const Matrix33 &v) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------
 | |
|     // Vector-times-matrix multiplication; see also the "operator *"
 | |
|     // functions defined below.
 | |
|     //
 | |
|     // m.multVecMatrix(src,dst) implements a homogeneous transformation
 | |
|     // by computing Vec3 (src.x, src.y, 1) * m and dividing by the
 | |
|     // result's third element.
 | |
|     //
 | |
|     // m.multDirMatrix(src,dst) multiplies src by the upper left 2x2
 | |
|     // submatrix, ignoring the rest of matrix m.
 | |
|     //-----------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     void                multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
 | |
| 
 | |
|     template <class S>
 | |
|     void                multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise division
 | |
|     //------------------------
 | |
| 
 | |
|     const Matrix33 &    operator /= (T a);
 | |
|     Matrix33            operator / (T a) const;
 | |
| 
 | |
| 
 | |
|     //------------------
 | |
|     // Transposed matrix
 | |
|     //------------------
 | |
| 
 | |
|     const Matrix33 &    transpose ();
 | |
|     Matrix33            transposed () const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------------------
 | |
|     // Inverse matrix: If singExc is false, inverting a singular
 | |
|     // matrix produces an identity matrix.  If singExc is true,
 | |
|     // inverting a singular matrix throws a SingMatrixExc.
 | |
|     //
 | |
|     // inverse() and invert() invert matrices using determinants;
 | |
|     // gjInverse() and gjInvert() use the Gauss-Jordan method.
 | |
|     //
 | |
|     // inverse() and invert() are significantly faster than
 | |
|     // gjInverse() and gjInvert(), but the results may be slightly
 | |
|     // less accurate.
 | |
|     //
 | |
|     //------------------------------------------------------------
 | |
| 
 | |
|     const Matrix33 &    invert (bool singExc = false)
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     Matrix33<T>         inverse (bool singExc = false) const
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     const Matrix33 &    gjInvert (bool singExc = false)
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     Matrix33<T>         gjInverse (bool singExc = false) const
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------
 | |
|     // Calculate the matrix minor of the (r,c) element
 | |
|     //------------------------------------------------
 | |
| 
 | |
|     T                   minorOf (const int r, const int c) const;
 | |
| 
 | |
|     //---------------------------------------------------
 | |
|     // Build a minor using the specified rows and columns
 | |
|     //---------------------------------------------------
 | |
| 
 | |
|     T                   fastMinor (const int r0, const int r1,
 | |
|                                    const int c0, const int c1) const;
 | |
| 
 | |
|     //------------
 | |
|     // Determinant
 | |
|     //------------
 | |
| 
 | |
|     T                   determinant() const;
 | |
| 
 | |
|     //-----------------------------------------
 | |
|     // Set matrix to rotation by r (in radians)
 | |
|     //-----------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    setRotation (S r);
 | |
| 
 | |
| 
 | |
|     //-----------------------------
 | |
|     // Rotate the given matrix by r
 | |
|     //-----------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    rotate (S r);
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------
 | |
|     // Set matrix to scale by given uniform factor
 | |
|     //--------------------------------------------
 | |
| 
 | |
|     const Matrix33 &    setScale (T s);
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Set matrix to scale by given vector
 | |
|     //------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    setScale (const Vec2<S> &s);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Scale the matrix by s
 | |
|     //----------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    scale (const Vec2<S> &s);
 | |
| 
 | |
| 
 | |
|     //------------------------------------------
 | |
|     // Set matrix to translation by given vector
 | |
|     //------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    setTranslation (const Vec2<S> &t);
 | |
| 
 | |
| 
 | |
|     //-----------------------------
 | |
|     // Return translation component
 | |
|     //-----------------------------
 | |
| 
 | |
|     Vec2<T>             translation () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------
 | |
|     // Translate the matrix by t
 | |
|     //--------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    translate (const Vec2<S> &t);
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------
 | |
|     // Set matrix to shear x for each y coord. by given factor xy
 | |
|     //-----------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    setShear (const S &h);
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------------------
 | |
|     // Set matrix to shear x for each y coord. by given factor h[0]
 | |
|     // and to shear y for each x coord. by given factor h[1]
 | |
|     //-------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    setShear (const Vec2<S> &h);
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------
 | |
|     // Shear the matrix in x for each y coord. by given factor xy
 | |
|     //-----------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    shear (const S &xy);
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------
 | |
|     // Shear the matrix in x for each y coord. by given factor xy
 | |
|     // and shear y for each x coord. by given factor yx
 | |
|     //-----------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix33 &    shear (const Vec2<S> &h);
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Number of the row and column dimensions, since
 | |
|     // Matrix33 is a square matrix.
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     static unsigned int	dimensions() {return 3;}
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------
 | |
|     // Limitations of type T (see also class limits<T>)
 | |
|     //-------------------------------------------------
 | |
| 
 | |
|     static T            baseTypeMin()           {return limits<T>::min();}
 | |
|     static T            baseTypeMax()           {return limits<T>::max();}
 | |
|     static T            baseTypeSmallest()      {return limits<T>::smallest();}
 | |
|     static T            baseTypeEpsilon()       {return limits<T>::epsilon();}
 | |
| 
 | |
|     typedef T		BaseType;
 | |
|     typedef Vec3<T>	BaseVecType;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     template <typename R, typename S>
 | |
|     struct isSameType
 | |
|     {
 | |
|         enum {value = 0};
 | |
|     };
 | |
| 
 | |
|     template <typename R>
 | |
|     struct isSameType<R, R>
 | |
|     {
 | |
|         enum {value = 1};
 | |
|     };
 | |
| };
 | |
| 
 | |
| 
 | |
| template <class T> class Matrix44
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     //-------------------
 | |
|     // Access to elements
 | |
|     //-------------------
 | |
| 
 | |
|     T           x[4][4];
 | |
| 
 | |
|     T *         operator [] (int i);
 | |
|     const T *   operator [] (int i) const;
 | |
| 
 | |
| 
 | |
|     //-------------
 | |
|     // Constructors
 | |
|     //-------------
 | |
| 
 | |
|     Matrix44 (Uninitialized) {}
 | |
| 
 | |
|     Matrix44 ();
 | |
|                                 // 1 0 0 0
 | |
|                                 // 0 1 0 0
 | |
|                                 // 0 0 1 0
 | |
|                                 // 0 0 0 1
 | |
| 
 | |
|     Matrix44 (T a);
 | |
|                                 // a a a a
 | |
|                                 // a a a a
 | |
|                                 // a a a a
 | |
|                                 // a a a a
 | |
| 
 | |
|     Matrix44 (const T a[4][4]) ;
 | |
|                                 // a[0][0] a[0][1] a[0][2] a[0][3]
 | |
|                                 // a[1][0] a[1][1] a[1][2] a[1][3]
 | |
|                                 // a[2][0] a[2][1] a[2][2] a[2][3]
 | |
|                                 // a[3][0] a[3][1] a[3][2] a[3][3]
 | |
| 
 | |
|     Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
 | |
|               T i, T j, T k, T l, T m, T n, T o, T p);
 | |
| 
 | |
|                                 // a b c d
 | |
|                                 // e f g h
 | |
|                                 // i j k l
 | |
|                                 // m n o p
 | |
| 
 | |
|     Matrix44 (Matrix33<T> r, Vec3<T> t);
 | |
|                                 // r r r 0
 | |
|                                 // r r r 0
 | |
|                                 // r r r 0
 | |
|                                 // t t t 1
 | |
| 
 | |
| 
 | |
|     //--------------------------------
 | |
|     // Copy constructor and assignment
 | |
|     //--------------------------------
 | |
| 
 | |
|     Matrix44 (const Matrix44 &v);
 | |
|     template <class S> explicit Matrix44 (const Matrix44<S> &v);
 | |
| 
 | |
|     const Matrix44 &    operator = (const Matrix44 &v);
 | |
|     const Matrix44 &    operator = (T a);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Compatibility with Sb
 | |
|     //----------------------
 | |
| 
 | |
|     T *                 getValue ();
 | |
|     const T *           getValue () const;
 | |
| 
 | |
|     template <class S>
 | |
|     void                getValue (Matrix44<S> &v) const;
 | |
|     template <class S>
 | |
|     Matrix44 &          setValue (const Matrix44<S> &v);
 | |
| 
 | |
|     template <class S>
 | |
|     Matrix44 &          setTheMatrix (const Matrix44<S> &v);
 | |
| 
 | |
|     //---------
 | |
|     // Identity
 | |
|     //---------
 | |
| 
 | |
|     void                makeIdentity();
 | |
| 
 | |
| 
 | |
|     //---------
 | |
|     // Equality
 | |
|     //---------
 | |
| 
 | |
|     bool                operator == (const Matrix44 &v) const;
 | |
|     bool                operator != (const Matrix44 &v) const;
 | |
| 
 | |
|     //-----------------------------------------------------------------------
 | |
|     // Compare two matrices and test if they are "approximately equal":
 | |
|     //
 | |
|     // equalWithAbsError (m, e)
 | |
|     //
 | |
|     //      Returns true if the coefficients of this and m are the same with
 | |
|     //      an absolute error of no more than e, i.e., for all i, j
 | |
|     //
 | |
|     //      abs (this[i][j] - m[i][j]) <= e
 | |
|     //
 | |
|     // equalWithRelError (m, e)
 | |
|     //
 | |
|     //      Returns true if the coefficients of this and m are the same with
 | |
|     //      a relative error of no more than e, i.e., for all i, j
 | |
|     //
 | |
|     //      abs (this[i] - v[i][j]) <= e * abs (this[i][j])
 | |
|     //-----------------------------------------------------------------------
 | |
| 
 | |
|     bool                equalWithAbsError (const Matrix44<T> &v, T e) const;
 | |
|     bool                equalWithRelError (const Matrix44<T> &v, T e) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise addition
 | |
|     //------------------------
 | |
| 
 | |
|     const Matrix44 &    operator += (const Matrix44 &v);
 | |
|     const Matrix44 &    operator += (T a);
 | |
|     Matrix44            operator + (const Matrix44 &v) const;
 | |
| 
 | |
| 
 | |
|     //---------------------------
 | |
|     // Component-wise subtraction
 | |
|     //---------------------------
 | |
| 
 | |
|     const Matrix44 &    operator -= (const Matrix44 &v);
 | |
|     const Matrix44 &    operator -= (T a);
 | |
|     Matrix44            operator - (const Matrix44 &v) const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Component-wise multiplication by -1
 | |
|     //------------------------------------
 | |
| 
 | |
|     Matrix44            operator - () const;
 | |
|     const Matrix44 &    negate ();
 | |
| 
 | |
| 
 | |
|     //------------------------------
 | |
|     // Component-wise multiplication
 | |
|     //------------------------------
 | |
| 
 | |
|     const Matrix44 &    operator *= (T a);
 | |
|     Matrix44            operator * (T a) const;
 | |
| 
 | |
| 
 | |
|     //-----------------------------------
 | |
|     // Matrix-times-matrix multiplication
 | |
|     //-----------------------------------
 | |
| 
 | |
|     const Matrix44 &    operator *= (const Matrix44 &v);
 | |
|     Matrix44            operator * (const Matrix44 &v) const;
 | |
| 
 | |
|     static void         multiply (const Matrix44 &a,    // assumes that
 | |
|                                   const Matrix44 &b,    // &a != &c and
 | |
|                                   Matrix44 &c);         // &b != &c.
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------
 | |
|     // Vector-times-matrix multiplication; see also the "operator *"
 | |
|     // functions defined below.
 | |
|     //
 | |
|     // m.multVecMatrix(src,dst) implements a homogeneous transformation
 | |
|     // by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by
 | |
|     // the result's third element.
 | |
|     //
 | |
|     // m.multDirMatrix(src,dst) multiplies src by the upper left 3x3
 | |
|     // submatrix, ignoring the rest of matrix m.
 | |
|     //-----------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     void                multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
 | |
| 
 | |
|     template <class S>
 | |
|     void                multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
 | |
| 
 | |
| 
 | |
|     //------------------------
 | |
|     // Component-wise division
 | |
|     //------------------------
 | |
| 
 | |
|     const Matrix44 &    operator /= (T a);
 | |
|     Matrix44            operator / (T a) const;
 | |
| 
 | |
| 
 | |
|     //------------------
 | |
|     // Transposed matrix
 | |
|     //------------------
 | |
| 
 | |
|     const Matrix44 &    transpose ();
 | |
|     Matrix44            transposed () const;
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------------------
 | |
|     // Inverse matrix: If singExc is false, inverting a singular
 | |
|     // matrix produces an identity matrix.  If singExc is true,
 | |
|     // inverting a singular matrix throws a SingMatrixExc.
 | |
|     //
 | |
|     // inverse() and invert() invert matrices using determinants;
 | |
|     // gjInverse() and gjInvert() use the Gauss-Jordan method.
 | |
|     //
 | |
|     // inverse() and invert() are significantly faster than
 | |
|     // gjInverse() and gjInvert(), but the results may be slightly
 | |
|     // less accurate.
 | |
|     //
 | |
|     //------------------------------------------------------------
 | |
| 
 | |
|     const Matrix44 &    invert (bool singExc = false)
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     Matrix44<T>         inverse (bool singExc = false) const
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     const Matrix44 &    gjInvert (bool singExc = false)
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
|     Matrix44<T>         gjInverse (bool singExc = false) const
 | |
|                         throw (Iex::MathExc);
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------
 | |
|     // Calculate the matrix minor of the (r,c) element
 | |
|     //------------------------------------------------
 | |
| 
 | |
|     T                   minorOf (const int r, const int c) const;
 | |
| 
 | |
|     //---------------------------------------------------
 | |
|     // Build a minor using the specified rows and columns
 | |
|     //---------------------------------------------------
 | |
| 
 | |
|     T                   fastMinor (const int r0, const int r1, const int r2,
 | |
|                                    const int c0, const int c1, const int c2) const;
 | |
| 
 | |
|     //------------
 | |
|     // Determinant
 | |
|     //------------
 | |
| 
 | |
|     T                   determinant() const;
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Set matrix to rotation by XYZ euler angles (in radians)
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setEulerAngles (const Vec3<S>& r);
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Set matrix to rotation around given axis by given angle
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setAxisAngle (const Vec3<S>& ax, S ang);
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------
 | |
|     // Rotate the matrix by XYZ euler angles in r
 | |
|     //-------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    rotate (const Vec3<S> &r);
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------
 | |
|     // Set matrix to scale by given uniform factor
 | |
|     //--------------------------------------------
 | |
| 
 | |
|     const Matrix44 &    setScale (T s);
 | |
| 
 | |
| 
 | |
|     //------------------------------------
 | |
|     // Set matrix to scale by given vector
 | |
|     //------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setScale (const Vec3<S> &s);
 | |
| 
 | |
| 
 | |
|     //----------------------
 | |
|     // Scale the matrix by s
 | |
|     //----------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    scale (const Vec3<S> &s);
 | |
| 
 | |
| 
 | |
|     //------------------------------------------
 | |
|     // Set matrix to translation by given vector
 | |
|     //------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setTranslation (const Vec3<S> &t);
 | |
| 
 | |
| 
 | |
|     //-----------------------------
 | |
|     // Return translation component
 | |
|     //-----------------------------
 | |
| 
 | |
|     const Vec3<T>       translation () const;
 | |
| 
 | |
| 
 | |
|     //--------------------------
 | |
|     // Translate the matrix by t
 | |
|     //--------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    translate (const Vec3<S> &t);
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------------------
 | |
|     // Set matrix to shear by given vector h.  The resulting matrix
 | |
|     //    will shear x for each y coord. by a factor of h[0] ;
 | |
|     //    will shear x for each z coord. by a factor of h[1] ;
 | |
|     //    will shear y for each z coord. by a factor of h[2] .
 | |
|     //-------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setShear (const Vec3<S> &h);
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------------------
 | |
|     // Set matrix to shear by given factors.  The resulting matrix
 | |
|     //    will shear x for each y coord. by a factor of h.xy ;
 | |
|     //    will shear x for each z coord. by a factor of h.xz ;
 | |
|     //    will shear y for each z coord. by a factor of h.yz ;
 | |
|     //    will shear y for each x coord. by a factor of h.yx ;
 | |
|     //    will shear z for each x coord. by a factor of h.zx ;
 | |
|     //    will shear z for each y coord. by a factor of h.zy .
 | |
|     //------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    setShear (const Shear6<S> &h);
 | |
| 
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Shear the matrix by given vector.  The composed matrix
 | |
|     // will be <shear> * <this>, where the shear matrix ...
 | |
|     //    will shear x for each y coord. by a factor of h[0] ;
 | |
|     //    will shear x for each z coord. by a factor of h[1] ;
 | |
|     //    will shear y for each z coord. by a factor of h[2] .
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    shear (const Vec3<S> &h);
 | |
| 
 | |
|     //--------------------------------------------------------
 | |
|     // Number of the row and column dimensions, since
 | |
|     // Matrix44 is a square matrix.
 | |
|     //--------------------------------------------------------
 | |
| 
 | |
|     static unsigned int	dimensions() {return 4;}
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------------------
 | |
|     // Shear the matrix by the given factors.  The composed matrix
 | |
|     // will be <shear> * <this>, where the shear matrix ...
 | |
|     //    will shear x for each y coord. by a factor of h.xy ;
 | |
|     //    will shear x for each z coord. by a factor of h.xz ;
 | |
|     //    will shear y for each z coord. by a factor of h.yz ;
 | |
|     //    will shear y for each x coord. by a factor of h.yx ;
 | |
|     //    will shear z for each x coord. by a factor of h.zx ;
 | |
|     //    will shear z for each y coord. by a factor of h.zy .
 | |
|     //------------------------------------------------------------
 | |
| 
 | |
|     template <class S>
 | |
|     const Matrix44 &    shear (const Shear6<S> &h);
 | |
| 
 | |
| 
 | |
|     //-------------------------------------------------
 | |
|     // Limitations of type T (see also class limits<T>)
 | |
|     //-------------------------------------------------
 | |
| 
 | |
|     static T            baseTypeMin()           {return limits<T>::min();}
 | |
|     static T            baseTypeMax()           {return limits<T>::max();}
 | |
|     static T            baseTypeSmallest()      {return limits<T>::smallest();}
 | |
|     static T            baseTypeEpsilon()       {return limits<T>::epsilon();}
 | |
| 
 | |
|     typedef T		BaseType;
 | |
|     typedef Vec4<T>	BaseVecType;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     template <typename R, typename S>
 | |
|     struct isSameType
 | |
|     {
 | |
|         enum {value = 0};
 | |
|     };
 | |
| 
 | |
|     template <typename R>
 | |
|     struct isSameType<R, R>
 | |
|     {
 | |
|         enum {value = 1};
 | |
|     };
 | |
| };
 | |
| 
 | |
| 
 | |
| //--------------
 | |
| // Stream output
 | |
| //--------------
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &  operator << (std::ostream & s, const Matrix33<T> &m);
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &  operator << (std::ostream & s, const Matrix44<T> &m);
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Vector-times-matrix multiplication operators
 | |
| //---------------------------------------------
 | |
| 
 | |
| template <class S, class T>
 | |
| const Vec2<S> &            operator *= (Vec2<S> &v, const Matrix33<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| Vec2<S>                    operator * (const Vec2<S> &v, const Matrix33<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| const Vec3<S> &            operator *= (Vec3<S> &v, const Matrix33<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| Vec3<S>                    operator * (const Vec3<S> &v, const Matrix33<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| const Vec3<S> &            operator *= (Vec3<S> &v, const Matrix44<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| Vec3<S>                    operator * (const Vec3<S> &v, const Matrix44<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| const Vec4<S> &            operator *= (Vec4<S> &v, const Matrix44<T> &m);
 | |
| 
 | |
| template <class S, class T>
 | |
| Vec4<S>                    operator * (const Vec4<S> &v, const Matrix44<T> &m);
 | |
| 
 | |
| //-------------------------
 | |
| // Typedefs for convenience
 | |
| //-------------------------
 | |
| 
 | |
| typedef Matrix33 <float>  M33f;
 | |
| typedef Matrix33 <double> M33d;
 | |
| typedef Matrix44 <float>  M44f;
 | |
| typedef Matrix44 <double> M44d;
 | |
| 
 | |
| 
 | |
| //---------------------------
 | |
| // Implementation of Matrix33
 | |
| //---------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Matrix33<T>::operator [] (int i)
 | |
| {
 | |
|     return x[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Matrix33<T>::operator [] (int i) const
 | |
| {
 | |
|     return x[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 ()
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = 1;
 | |
|     x[1][1] = 1;
 | |
|     x[2][2] = 1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 (T a)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = a;
 | |
|     x[0][2] = a;
 | |
|     x[1][0] = a;
 | |
|     x[1][1] = a;
 | |
|     x[1][2] = a;
 | |
|     x[2][0] = a;
 | |
|     x[2][1] = a;
 | |
|     x[2][2] = a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 (const T a[3][3])
 | |
| {
 | |
|     memcpy (x, a, sizeof (x));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = b;
 | |
|     x[0][2] = c;
 | |
|     x[1][0] = d;
 | |
|     x[1][1] = e;
 | |
|     x[1][2] = f;
 | |
|     x[2][0] = g;
 | |
|     x[2][1] = h;
 | |
|     x[2][2] = i;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 (const Matrix33 &v)
 | |
| {
 | |
|     memcpy (x, v.x, sizeof (x));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Matrix33<T>::Matrix33 (const Matrix33<S> &v)
 | |
| {
 | |
|     x[0][0] = T (v.x[0][0]);
 | |
|     x[0][1] = T (v.x[0][1]);
 | |
|     x[0][2] = T (v.x[0][2]);
 | |
|     x[1][0] = T (v.x[1][0]);
 | |
|     x[1][1] = T (v.x[1][1]);
 | |
|     x[1][2] = T (v.x[1][2]);
 | |
|     x[2][0] = T (v.x[2][0]);
 | |
|     x[2][1] = T (v.x[2][1]);
 | |
|     x[2][2] = T (v.x[2][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Matrix33<T> &
 | |
| Matrix33<T>::operator = (const Matrix33 &v)
 | |
| {
 | |
|     memcpy (x, v.x, sizeof (x));
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Matrix33<T> &
 | |
| Matrix33<T>::operator = (T a)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = a;
 | |
|     x[0][2] = a;
 | |
|     x[1][0] = a;
 | |
|     x[1][1] = a;
 | |
|     x[1][2] = a;
 | |
|     x[2][0] = a;
 | |
|     x[2][1] = a;
 | |
|     x[2][2] = a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Matrix33<T>::getValue ()
 | |
| {
 | |
|     return (T *) &x[0][0];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Matrix33<T>::getValue () const
 | |
| {
 | |
|     return (const T *) &x[0][0];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Matrix33<T>::getValue (Matrix33<S> &v) const
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (v.x, x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         v.x[0][0] = x[0][0];
 | |
|         v.x[0][1] = x[0][1];
 | |
|         v.x[0][2] = x[0][2];
 | |
|         v.x[1][0] = x[1][0];
 | |
|         v.x[1][1] = x[1][1];
 | |
|         v.x[1][2] = x[1][2];
 | |
|         v.x[2][0] = x[2][0];
 | |
|         v.x[2][1] = x[2][1];
 | |
|         v.x[2][2] = x[2][2];
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline Matrix33<T> &
 | |
| Matrix33<T>::setValue (const Matrix33<S> &v)
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (x, v.x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         x[0][0] = v.x[0][0];
 | |
|         x[0][1] = v.x[0][1];
 | |
|         x[0][2] = v.x[0][2];
 | |
|         x[1][0] = v.x[1][0];
 | |
|         x[1][1] = v.x[1][1];
 | |
|         x[1][2] = v.x[1][2];
 | |
|         x[2][0] = v.x[2][0];
 | |
|         x[2][1] = v.x[2][1];
 | |
|         x[2][2] = v.x[2][2];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline Matrix33<T> &
 | |
| Matrix33<T>::setTheMatrix (const Matrix33<S> &v)
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (x, v.x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         x[0][0] = v.x[0][0];
 | |
|         x[0][1] = v.x[0][1];
 | |
|         x[0][2] = v.x[0][2];
 | |
|         x[1][0] = v.x[1][0];
 | |
|         x[1][1] = v.x[1][1];
 | |
|         x[1][2] = v.x[1][2];
 | |
|         x[2][0] = v.x[2][0];
 | |
|         x[2][1] = v.x[2][1];
 | |
|         x[2][2] = v.x[2][2];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void
 | |
| Matrix33<T>::makeIdentity()
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = 1;
 | |
|     x[1][1] = 1;
 | |
|     x[2][2] = 1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix33<T>::operator == (const Matrix33 &v) const
 | |
| {
 | |
|     return x[0][0] == v.x[0][0] &&
 | |
|            x[0][1] == v.x[0][1] &&
 | |
|            x[0][2] == v.x[0][2] &&
 | |
|            x[1][0] == v.x[1][0] &&
 | |
|            x[1][1] == v.x[1][1] &&
 | |
|            x[1][2] == v.x[1][2] &&
 | |
|            x[2][0] == v.x[2][0] &&
 | |
|            x[2][1] == v.x[2][1] &&
 | |
|            x[2][2] == v.x[2][2];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix33<T>::operator != (const Matrix33 &v) const
 | |
| {
 | |
|     return x[0][0] != v.x[0][0] ||
 | |
|            x[0][1] != v.x[0][1] ||
 | |
|            x[0][2] != v.x[0][2] ||
 | |
|            x[1][0] != v.x[1][0] ||
 | |
|            x[1][1] != v.x[1][1] ||
 | |
|            x[1][2] != v.x[1][2] ||
 | |
|            x[2][0] != v.x[2][0] ||
 | |
|            x[2][1] != v.x[2][1] ||
 | |
|            x[2][2] != v.x[2][2];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         for (int j = 0; j < 3; j++)
 | |
|             if (!Imath::equalWithAbsError ((*this)[i][j], m[i][j], e))
 | |
|                 return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         for (int j = 0; j < 3; j++)
 | |
|             if (!Imath::equalWithRelError ((*this)[i][j], m[i][j], e))
 | |
|                 return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator += (const Matrix33<T> &v)
 | |
| {
 | |
|     x[0][0] += v.x[0][0];
 | |
|     x[0][1] += v.x[0][1];
 | |
|     x[0][2] += v.x[0][2];
 | |
|     x[1][0] += v.x[1][0];
 | |
|     x[1][1] += v.x[1][1];
 | |
|     x[1][2] += v.x[1][2];
 | |
|     x[2][0] += v.x[2][0];
 | |
|     x[2][1] += v.x[2][1];
 | |
|     x[2][2] += v.x[2][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator += (T a)
 | |
| {
 | |
|     x[0][0] += a;
 | |
|     x[0][1] += a;
 | |
|     x[0][2] += a;
 | |
|     x[1][0] += a;
 | |
|     x[1][1] += a;
 | |
|     x[1][2] += a;
 | |
|     x[2][0] += a;
 | |
|     x[2][1] += a;
 | |
|     x[2][2] += a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator + (const Matrix33<T> &v) const
 | |
| {
 | |
|     return Matrix33 (x[0][0] + v.x[0][0],
 | |
|                      x[0][1] + v.x[0][1],
 | |
|                      x[0][2] + v.x[0][2],
 | |
|                      x[1][0] + v.x[1][0],
 | |
|                      x[1][1] + v.x[1][1],
 | |
|                      x[1][2] + v.x[1][2],
 | |
|                      x[2][0] + v.x[2][0],
 | |
|                      x[2][1] + v.x[2][1],
 | |
|                      x[2][2] + v.x[2][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator -= (const Matrix33<T> &v)
 | |
| {
 | |
|     x[0][0] -= v.x[0][0];
 | |
|     x[0][1] -= v.x[0][1];
 | |
|     x[0][2] -= v.x[0][2];
 | |
|     x[1][0] -= v.x[1][0];
 | |
|     x[1][1] -= v.x[1][1];
 | |
|     x[1][2] -= v.x[1][2];
 | |
|     x[2][0] -= v.x[2][0];
 | |
|     x[2][1] -= v.x[2][1];
 | |
|     x[2][2] -= v.x[2][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator -= (T a)
 | |
| {
 | |
|     x[0][0] -= a;
 | |
|     x[0][1] -= a;
 | |
|     x[0][2] -= a;
 | |
|     x[1][0] -= a;
 | |
|     x[1][1] -= a;
 | |
|     x[1][2] -= a;
 | |
|     x[2][0] -= a;
 | |
|     x[2][1] -= a;
 | |
|     x[2][2] -= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator - (const Matrix33<T> &v) const
 | |
| {
 | |
|     return Matrix33 (x[0][0] - v.x[0][0],
 | |
|                      x[0][1] - v.x[0][1],
 | |
|                      x[0][2] - v.x[0][2],
 | |
|                      x[1][0] - v.x[1][0],
 | |
|                      x[1][1] - v.x[1][1],
 | |
|                      x[1][2] - v.x[1][2],
 | |
|                      x[2][0] - v.x[2][0],
 | |
|                      x[2][1] - v.x[2][1],
 | |
|                      x[2][2] - v.x[2][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator - () const
 | |
| {
 | |
|     return Matrix33 (-x[0][0],
 | |
|                      -x[0][1],
 | |
|                      -x[0][2],
 | |
|                      -x[1][0],
 | |
|                      -x[1][1],
 | |
|                      -x[1][2],
 | |
|                      -x[2][0],
 | |
|                      -x[2][1],
 | |
|                      -x[2][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::negate ()
 | |
| {
 | |
|     x[0][0] = -x[0][0];
 | |
|     x[0][1] = -x[0][1];
 | |
|     x[0][2] = -x[0][2];
 | |
|     x[1][0] = -x[1][0];
 | |
|     x[1][1] = -x[1][1];
 | |
|     x[1][2] = -x[1][2];
 | |
|     x[2][0] = -x[2][0];
 | |
|     x[2][1] = -x[2][1];
 | |
|     x[2][2] = -x[2][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator *= (T a)
 | |
| {
 | |
|     x[0][0] *= a;
 | |
|     x[0][1] *= a;
 | |
|     x[0][2] *= a;
 | |
|     x[1][0] *= a;
 | |
|     x[1][1] *= a;
 | |
|     x[1][2] *= a;
 | |
|     x[2][0] *= a;
 | |
|     x[2][1] *= a;
 | |
|     x[2][2] *= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator * (T a) const
 | |
| {
 | |
|     return Matrix33 (x[0][0] * a,
 | |
|                      x[0][1] * a,
 | |
|                      x[0][2] * a,
 | |
|                      x[1][0] * a,
 | |
|                      x[1][1] * a,
 | |
|                      x[1][2] * a,
 | |
|                      x[2][0] * a,
 | |
|                      x[2][1] * a,
 | |
|                      x[2][2] * a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Matrix33<T>
 | |
| operator * (T a, const Matrix33<T> &v)
 | |
| {
 | |
|     return v * a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator *= (const Matrix33<T> &v)
 | |
| {
 | |
|     Matrix33 tmp (T (0));
 | |
| 
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         for (int j = 0; j < 3; j++)
 | |
|             for (int k = 0; k < 3; k++)
 | |
|                 tmp.x[i][j] += x[i][k] * v.x[k][j];
 | |
| 
 | |
|     *this = tmp;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator * (const Matrix33<T> &v) const
 | |
| {
 | |
|     Matrix33 tmp (T (0));
 | |
| 
 | |
|     for (int i = 0; i < 3; i++)
 | |
|         for (int j = 0; j < 3; j++)
 | |
|             for (int k = 0; k < 3; k++)
 | |
|                 tmp.x[i][j] += x[i][k] * v.x[k][j];
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| void
 | |
| Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const
 | |
| {
 | |
|     S a, b, w;
 | |
| 
 | |
|     a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0];
 | |
|     b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1];
 | |
|     w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2];
 | |
| 
 | |
|     dst.x = a / w;
 | |
|     dst.y = b / w;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| void
 | |
| Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const
 | |
| {
 | |
|     S a, b;
 | |
| 
 | |
|     a = src[0] * x[0][0] + src[1] * x[1][0];
 | |
|     b = src[0] * x[0][1] + src[1] * x[1][1];
 | |
| 
 | |
|     dst.x = a;
 | |
|     dst.y = b;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::operator /= (T a)
 | |
| {
 | |
|     x[0][0] /= a;
 | |
|     x[0][1] /= a;
 | |
|     x[0][2] /= a;
 | |
|     x[1][0] /= a;
 | |
|     x[1][1] /= a;
 | |
|     x[1][2] /= a;
 | |
|     x[2][0] /= a;
 | |
|     x[2][1] /= a;
 | |
|     x[2][2] /= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::operator / (T a) const
 | |
| {
 | |
|     return Matrix33 (x[0][0] / a,
 | |
|                      x[0][1] / a,
 | |
|                      x[0][2] / a,
 | |
|                      x[1][0] / a,
 | |
|                      x[1][1] / a,
 | |
|                      x[1][2] / a,
 | |
|                      x[2][0] / a,
 | |
|                      x[2][1] / a,
 | |
|                      x[2][2] / a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::transpose ()
 | |
| {
 | |
|     Matrix33 tmp (x[0][0],
 | |
|                   x[1][0],
 | |
|                   x[2][0],
 | |
|                   x[0][1],
 | |
|                   x[1][1],
 | |
|                   x[2][1],
 | |
|                   x[0][2],
 | |
|                   x[1][2],
 | |
|                   x[2][2]);
 | |
|     *this = tmp;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::transposed () const
 | |
| {
 | |
|     return Matrix33 (x[0][0],
 | |
|                      x[1][0],
 | |
|                      x[2][0],
 | |
|                      x[0][1],
 | |
|                      x[1][1],
 | |
|                      x[2][1],
 | |
|                      x[0][2],
 | |
|                      x[1][2],
 | |
|                      x[2][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::gjInvert (bool singExc) throw (Iex::MathExc)
 | |
| {
 | |
|     *this = gjInverse (singExc);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::gjInverse (bool singExc) const throw (Iex::MathExc)
 | |
| {
 | |
|     int i, j, k;
 | |
|     Matrix33 s;
 | |
|     Matrix33 t (*this);
 | |
| 
 | |
|     // Forward elimination
 | |
| 
 | |
|     for (i = 0; i < 2 ; i++)
 | |
|     {
 | |
|         int pivot = i;
 | |
| 
 | |
|         T pivotsize = t[i][i];
 | |
| 
 | |
|         if (pivotsize < 0)
 | |
|             pivotsize = -pivotsize;
 | |
| 
 | |
|         for (j = i + 1; j < 3; j++)
 | |
|         {
 | |
|             T tmp = t[j][i];
 | |
| 
 | |
|             if (tmp < 0)
 | |
|                 tmp = -tmp;
 | |
| 
 | |
|             if (tmp > pivotsize)
 | |
|             {
 | |
|                 pivot = j;
 | |
|                 pivotsize = tmp;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (pivotsize == 0)
 | |
|         {
 | |
|             if (singExc)
 | |
|                 throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
 | |
| 
 | |
|             return Matrix33();
 | |
|         }
 | |
| 
 | |
|         if (pivot != i)
 | |
|         {
 | |
|             for (j = 0; j < 3; j++)
 | |
|             {
 | |
|                 T tmp;
 | |
| 
 | |
|                 tmp = t[i][j];
 | |
|                 t[i][j] = t[pivot][j];
 | |
|                 t[pivot][j] = tmp;
 | |
| 
 | |
|                 tmp = s[i][j];
 | |
|                 s[i][j] = s[pivot][j];
 | |
|                 s[pivot][j] = tmp;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (j = i + 1; j < 3; j++)
 | |
|         {
 | |
|             T f = t[j][i] / t[i][i];
 | |
| 
 | |
|             for (k = 0; k < 3; k++)
 | |
|             {
 | |
|                 t[j][k] -= f * t[i][k];
 | |
|                 s[j][k] -= f * s[i][k];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Backward substitution
 | |
| 
 | |
|     for (i = 2; i >= 0; --i)
 | |
|     {
 | |
|         T f;
 | |
| 
 | |
|         if ((f = t[i][i]) == 0)
 | |
|         {
 | |
|             if (singExc)
 | |
|                 throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
 | |
| 
 | |
|             return Matrix33();
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < 3; j++)
 | |
|         {
 | |
|             t[i][j] /= f;
 | |
|             s[i][j] /= f;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < i; j++)
 | |
|         {
 | |
|             f = t[j][i];
 | |
| 
 | |
|             for (k = 0; k < 3; k++)
 | |
|             {
 | |
|                 t[j][k] -= f * t[i][k];
 | |
|                 s[j][k] -= f * s[i][k];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::invert (bool singExc) throw (Iex::MathExc)
 | |
| {
 | |
|     *this = inverse (singExc);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| Matrix33<T>::inverse (bool singExc) const throw (Iex::MathExc)
 | |
| {
 | |
|     if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1)
 | |
|     {
 | |
|         Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
 | |
|                     x[2][1] * x[0][2] - x[0][1] * x[2][2],
 | |
|                     x[0][1] * x[1][2] - x[1][1] * x[0][2],
 | |
| 
 | |
|                     x[2][0] * x[1][2] - x[1][0] * x[2][2],
 | |
|                     x[0][0] * x[2][2] - x[2][0] * x[0][2],
 | |
|                     x[1][0] * x[0][2] - x[0][0] * x[1][2],
 | |
| 
 | |
|                     x[1][0] * x[2][1] - x[2][0] * x[1][1],
 | |
|                     x[2][0] * x[0][1] - x[0][0] * x[2][1],
 | |
|                     x[0][0] * x[1][1] - x[1][0] * x[0][1]);
 | |
| 
 | |
|         T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
 | |
| 
 | |
|         if (Imath::abs (r) >= 1)
 | |
|         {
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|             {
 | |
|                 for (int j = 0; j < 3; ++j)
 | |
|                 {
 | |
|                     s[i][j] /= r;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             T mr = Imath::abs (r) / limits<T>::smallest();
 | |
| 
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|             {
 | |
|                 for (int j = 0; j < 3; ++j)
 | |
|                 {
 | |
|                     if (mr > Imath::abs (s[i][j]))
 | |
|                     {
 | |
|                         s[i][j] /= r;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if (singExc)
 | |
|                             throw SingMatrixExc ("Cannot invert "
 | |
|                                                  "singular matrix.");
 | |
|                         return Matrix33();
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return s;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Matrix33 s ( x[1][1],
 | |
|                     -x[0][1],
 | |
|                      0,
 | |
| 
 | |
|                     -x[1][0],
 | |
|                      x[0][0],
 | |
|                      0,
 | |
| 
 | |
|                      0,
 | |
|                      0,
 | |
|                      1);
 | |
| 
 | |
|         T r = x[0][0] * x[1][1] - x[1][0] * x[0][1];
 | |
| 
 | |
|         if (Imath::abs (r) >= 1)
 | |
|         {
 | |
|             for (int i = 0; i < 2; ++i)
 | |
|             {
 | |
|                 for (int j = 0; j < 2; ++j)
 | |
|                 {
 | |
|                     s[i][j] /= r;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             T mr = Imath::abs (r) / limits<T>::smallest();
 | |
| 
 | |
|             for (int i = 0; i < 2; ++i)
 | |
|             {
 | |
|                 for (int j = 0; j < 2; ++j)
 | |
|                 {
 | |
|                     if (mr > Imath::abs (s[i][j]))
 | |
|                     {
 | |
|                         s[i][j] /= r;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if (singExc)
 | |
|                             throw SingMatrixExc ("Cannot invert "
 | |
|                                                  "singular matrix.");
 | |
|                         return Matrix33();
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0];
 | |
|         s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1];
 | |
| 
 | |
|         return s;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix33<T>::minorOf (const int r, const int c) const
 | |
| {
 | |
|     int r0 = 0 + (r < 1 ? 1 : 0);
 | |
|     int r1 = 1 + (r < 2 ? 1 : 0);
 | |
|     int c0 = 0 + (c < 1 ? 1 : 0);
 | |
|     int c1 = 1 + (c < 2 ? 1 : 0);
 | |
| 
 | |
|     return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix33<T>::fastMinor( const int r0, const int r1,
 | |
|                         const int c0, const int c1) const
 | |
| {
 | |
|     return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix33<T>::determinant () const
 | |
| {
 | |
|     return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) +
 | |
|            x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) +
 | |
|            x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setRotation (S r)
 | |
| {
 | |
|     S cos_r, sin_r;
 | |
| 
 | |
|     cos_r = Math<T>::cos (r);
 | |
|     sin_r = Math<T>::sin (r);
 | |
| 
 | |
|     x[0][0] =  cos_r;
 | |
|     x[0][1] =  sin_r;
 | |
|     x[0][2] =  0;
 | |
| 
 | |
|     x[1][0] =  -sin_r;
 | |
|     x[1][1] =  cos_r;
 | |
|     x[1][2] =  0;
 | |
| 
 | |
|     x[2][0] =  0;
 | |
|     x[2][1] =  0;
 | |
|     x[2][2] =  1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::rotate (S r)
 | |
| {
 | |
|     *this *= Matrix33<T>().setRotation (r);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setScale (T s)
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = s;
 | |
|     x[1][1] = s;
 | |
|     x[2][2] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setScale (const Vec2<S> &s)
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = s[0];
 | |
|     x[1][1] = s[1];
 | |
|     x[2][2] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::scale (const Vec2<S> &s)
 | |
| {
 | |
|     x[0][0] *= s[0];
 | |
|     x[0][1] *= s[0];
 | |
|     x[0][2] *= s[0];
 | |
| 
 | |
|     x[1][0] *= s[1];
 | |
|     x[1][1] *= s[1];
 | |
|     x[1][2] *= s[1];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setTranslation (const Vec2<S> &t)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = 0;
 | |
|     x[0][2] = 0;
 | |
| 
 | |
|     x[1][0] = 0;
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = 0;
 | |
| 
 | |
|     x[2][0] = t[0];
 | |
|     x[2][1] = t[1];
 | |
|     x[2][2] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec2<T>
 | |
| Matrix33<T>::translation () const
 | |
| {
 | |
|     return Vec2<T> (x[2][0], x[2][1]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::translate (const Vec2<S> &t)
 | |
| {
 | |
|     x[2][0] += t[0] * x[0][0] + t[1] * x[1][0];
 | |
|     x[2][1] += t[0] * x[0][1] + t[1] * x[1][1];
 | |
|     x[2][2] += t[0] * x[0][2] + t[1] * x[1][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setShear (const S &xy)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = 0;
 | |
|     x[0][2] = 0;
 | |
| 
 | |
|     x[1][0] = xy;
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = 0;
 | |
| 
 | |
|     x[2][0] = 0;
 | |
|     x[2][1] = 0;
 | |
|     x[2][2] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::setShear (const Vec2<S> &h)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = h[1];
 | |
|     x[0][2] = 0;
 | |
| 
 | |
|     x[1][0] = h[0];
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = 0;
 | |
| 
 | |
|     x[2][0] = 0;
 | |
|     x[2][1] = 0;
 | |
|     x[2][2] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::shear (const S &xy)
 | |
| {
 | |
|     //
 | |
|     // In this case, we don't need a temp. copy of the matrix
 | |
|     // because we never use a value on the RHS after we've
 | |
|     // changed it on the LHS.
 | |
|     //
 | |
| 
 | |
|     x[1][0] += xy * x[0][0];
 | |
|     x[1][1] += xy * x[0][1];
 | |
|     x[1][2] += xy * x[0][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix33<T> &
 | |
| Matrix33<T>::shear (const Vec2<S> &h)
 | |
| {
 | |
|     Matrix33<T> P (*this);
 | |
| 
 | |
|     x[0][0] = P[0][0] + h[1] * P[1][0];
 | |
|     x[0][1] = P[0][1] + h[1] * P[1][1];
 | |
|     x[0][2] = P[0][2] + h[1] * P[1][2];
 | |
| 
 | |
|     x[1][0] = P[1][0] + h[0] * P[0][0];
 | |
|     x[1][1] = P[1][1] + h[0] * P[0][1];
 | |
|     x[1][2] = P[1][2] + h[0] * P[0][2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------
 | |
| // Implementation of Matrix44
 | |
| //---------------------------
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Matrix44<T>::operator [] (int i)
 | |
| {
 | |
|     return x[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Matrix44<T>::operator [] (int i) const
 | |
| {
 | |
|     return x[i];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 ()
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = 1;
 | |
|     x[1][1] = 1;
 | |
|     x[2][2] = 1;
 | |
|     x[3][3] = 1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (T a)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = a;
 | |
|     x[0][2] = a;
 | |
|     x[0][3] = a;
 | |
|     x[1][0] = a;
 | |
|     x[1][1] = a;
 | |
|     x[1][2] = a;
 | |
|     x[1][3] = a;
 | |
|     x[2][0] = a;
 | |
|     x[2][1] = a;
 | |
|     x[2][2] = a;
 | |
|     x[2][3] = a;
 | |
|     x[3][0] = a;
 | |
|     x[3][1] = a;
 | |
|     x[3][2] = a;
 | |
|     x[3][3] = a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (const T a[4][4])
 | |
| {
 | |
|     memcpy (x, a, sizeof (x));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
 | |
|                        T i, T j, T k, T l, T m, T n, T o, T p)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = b;
 | |
|     x[0][2] = c;
 | |
|     x[0][3] = d;
 | |
|     x[1][0] = e;
 | |
|     x[1][1] = f;
 | |
|     x[1][2] = g;
 | |
|     x[1][3] = h;
 | |
|     x[2][0] = i;
 | |
|     x[2][1] = j;
 | |
|     x[2][2] = k;
 | |
|     x[2][3] = l;
 | |
|     x[3][0] = m;
 | |
|     x[3][1] = n;
 | |
|     x[3][2] = o;
 | |
|     x[3][3] = p;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t)
 | |
| {
 | |
|     x[0][0] = r[0][0];
 | |
|     x[0][1] = r[0][1];
 | |
|     x[0][2] = r[0][2];
 | |
|     x[0][3] = 0;
 | |
|     x[1][0] = r[1][0];
 | |
|     x[1][1] = r[1][1];
 | |
|     x[1][2] = r[1][2];
 | |
|     x[1][3] = 0;
 | |
|     x[2][0] = r[2][0];
 | |
|     x[2][1] = r[2][1];
 | |
|     x[2][2] = r[2][2];
 | |
|     x[2][3] = 0;
 | |
|     x[3][0] = t[0];
 | |
|     x[3][1] = t[1];
 | |
|     x[3][2] = t[2];
 | |
|     x[3][3] = 1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (const Matrix44 &v)
 | |
| {
 | |
|     x[0][0] = v.x[0][0];
 | |
|     x[0][1] = v.x[0][1];
 | |
|     x[0][2] = v.x[0][2];
 | |
|     x[0][3] = v.x[0][3];
 | |
|     x[1][0] = v.x[1][0];
 | |
|     x[1][1] = v.x[1][1];
 | |
|     x[1][2] = v.x[1][2];
 | |
|     x[1][3] = v.x[1][3];
 | |
|     x[2][0] = v.x[2][0];
 | |
|     x[2][1] = v.x[2][1];
 | |
|     x[2][2] = v.x[2][2];
 | |
|     x[2][3] = v.x[2][3];
 | |
|     x[3][0] = v.x[3][0];
 | |
|     x[3][1] = v.x[3][1];
 | |
|     x[3][2] = v.x[3][2];
 | |
|     x[3][3] = v.x[3][3];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline
 | |
| Matrix44<T>::Matrix44 (const Matrix44<S> &v)
 | |
| {
 | |
|     x[0][0] = T (v.x[0][0]);
 | |
|     x[0][1] = T (v.x[0][1]);
 | |
|     x[0][2] = T (v.x[0][2]);
 | |
|     x[0][3] = T (v.x[0][3]);
 | |
|     x[1][0] = T (v.x[1][0]);
 | |
|     x[1][1] = T (v.x[1][1]);
 | |
|     x[1][2] = T (v.x[1][2]);
 | |
|     x[1][3] = T (v.x[1][3]);
 | |
|     x[2][0] = T (v.x[2][0]);
 | |
|     x[2][1] = T (v.x[2][1]);
 | |
|     x[2][2] = T (v.x[2][2]);
 | |
|     x[2][3] = T (v.x[2][3]);
 | |
|     x[3][0] = T (v.x[3][0]);
 | |
|     x[3][1] = T (v.x[3][1]);
 | |
|     x[3][2] = T (v.x[3][2]);
 | |
|     x[3][3] = T (v.x[3][3]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Matrix44<T> &
 | |
| Matrix44<T>::operator = (const Matrix44 &v)
 | |
| {
 | |
|     x[0][0] = v.x[0][0];
 | |
|     x[0][1] = v.x[0][1];
 | |
|     x[0][2] = v.x[0][2];
 | |
|     x[0][3] = v.x[0][3];
 | |
|     x[1][0] = v.x[1][0];
 | |
|     x[1][1] = v.x[1][1];
 | |
|     x[1][2] = v.x[1][2];
 | |
|     x[1][3] = v.x[1][3];
 | |
|     x[2][0] = v.x[2][0];
 | |
|     x[2][1] = v.x[2][1];
 | |
|     x[2][2] = v.x[2][2];
 | |
|     x[2][3] = v.x[2][3];
 | |
|     x[3][0] = v.x[3][0];
 | |
|     x[3][1] = v.x[3][1];
 | |
|     x[3][2] = v.x[3][2];
 | |
|     x[3][3] = v.x[3][3];
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Matrix44<T> &
 | |
| Matrix44<T>::operator = (T a)
 | |
| {
 | |
|     x[0][0] = a;
 | |
|     x[0][1] = a;
 | |
|     x[0][2] = a;
 | |
|     x[0][3] = a;
 | |
|     x[1][0] = a;
 | |
|     x[1][1] = a;
 | |
|     x[1][2] = a;
 | |
|     x[1][3] = a;
 | |
|     x[2][0] = a;
 | |
|     x[2][1] = a;
 | |
|     x[2][2] = a;
 | |
|     x[2][3] = a;
 | |
|     x[3][0] = a;
 | |
|     x[3][1] = a;
 | |
|     x[3][2] = a;
 | |
|     x[3][3] = a;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T *
 | |
| Matrix44<T>::getValue ()
 | |
| {
 | |
|     return (T *) &x[0][0];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const T *
 | |
| Matrix44<T>::getValue () const
 | |
| {
 | |
|     return (const T *) &x[0][0];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline void
 | |
| Matrix44<T>::getValue (Matrix44<S> &v) const
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (v.x, x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         v.x[0][0] = x[0][0];
 | |
|         v.x[0][1] = x[0][1];
 | |
|         v.x[0][2] = x[0][2];
 | |
|         v.x[0][3] = x[0][3];
 | |
|         v.x[1][0] = x[1][0];
 | |
|         v.x[1][1] = x[1][1];
 | |
|         v.x[1][2] = x[1][2];
 | |
|         v.x[1][3] = x[1][3];
 | |
|         v.x[2][0] = x[2][0];
 | |
|         v.x[2][1] = x[2][1];
 | |
|         v.x[2][2] = x[2][2];
 | |
|         v.x[2][3] = x[2][3];
 | |
|         v.x[3][0] = x[3][0];
 | |
|         v.x[3][1] = x[3][1];
 | |
|         v.x[3][2] = x[3][2];
 | |
|         v.x[3][3] = x[3][3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline Matrix44<T> &
 | |
| Matrix44<T>::setValue (const Matrix44<S> &v)
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (x, v.x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         x[0][0] = v.x[0][0];
 | |
|         x[0][1] = v.x[0][1];
 | |
|         x[0][2] = v.x[0][2];
 | |
|         x[0][3] = v.x[0][3];
 | |
|         x[1][0] = v.x[1][0];
 | |
|         x[1][1] = v.x[1][1];
 | |
|         x[1][2] = v.x[1][2];
 | |
|         x[1][3] = v.x[1][3];
 | |
|         x[2][0] = v.x[2][0];
 | |
|         x[2][1] = v.x[2][1];
 | |
|         x[2][2] = v.x[2][2];
 | |
|         x[2][3] = v.x[2][3];
 | |
|         x[3][0] = v.x[3][0];
 | |
|         x[3][1] = v.x[3][1];
 | |
|         x[3][2] = v.x[3][2];
 | |
|         x[3][3] = v.x[3][3];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| inline Matrix44<T> &
 | |
| Matrix44<T>::setTheMatrix (const Matrix44<S> &v)
 | |
| {
 | |
|     if (isSameType<S,T>::value)
 | |
|     {
 | |
|         memcpy (x, v.x, sizeof (x));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         x[0][0] = v.x[0][0];
 | |
|         x[0][1] = v.x[0][1];
 | |
|         x[0][2] = v.x[0][2];
 | |
|         x[0][3] = v.x[0][3];
 | |
|         x[1][0] = v.x[1][0];
 | |
|         x[1][1] = v.x[1][1];
 | |
|         x[1][2] = v.x[1][2];
 | |
|         x[1][3] = v.x[1][3];
 | |
|         x[2][0] = v.x[2][0];
 | |
|         x[2][1] = v.x[2][1];
 | |
|         x[2][2] = v.x[2][2];
 | |
|         x[2][3] = v.x[2][3];
 | |
|         x[3][0] = v.x[3][0];
 | |
|         x[3][1] = v.x[3][1];
 | |
|         x[3][2] = v.x[3][2];
 | |
|         x[3][3] = v.x[3][3];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void
 | |
| Matrix44<T>::makeIdentity()
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = 1;
 | |
|     x[1][1] = 1;
 | |
|     x[2][2] = 1;
 | |
|     x[3][3] = 1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix44<T>::operator == (const Matrix44 &v) const
 | |
| {
 | |
|     return x[0][0] == v.x[0][0] &&
 | |
|            x[0][1] == v.x[0][1] &&
 | |
|            x[0][2] == v.x[0][2] &&
 | |
|            x[0][3] == v.x[0][3] &&
 | |
|            x[1][0] == v.x[1][0] &&
 | |
|            x[1][1] == v.x[1][1] &&
 | |
|            x[1][2] == v.x[1][2] &&
 | |
|            x[1][3] == v.x[1][3] &&
 | |
|            x[2][0] == v.x[2][0] &&
 | |
|            x[2][1] == v.x[2][1] &&
 | |
|            x[2][2] == v.x[2][2] &&
 | |
|            x[2][3] == v.x[2][3] &&
 | |
|            x[3][0] == v.x[3][0] &&
 | |
|            x[3][1] == v.x[3][1] &&
 | |
|            x[3][2] == v.x[3][2] &&
 | |
|            x[3][3] == v.x[3][3];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix44<T>::operator != (const Matrix44 &v) const
 | |
| {
 | |
|     return x[0][0] != v.x[0][0] ||
 | |
|            x[0][1] != v.x[0][1] ||
 | |
|            x[0][2] != v.x[0][2] ||
 | |
|            x[0][3] != v.x[0][3] ||
 | |
|            x[1][0] != v.x[1][0] ||
 | |
|            x[1][1] != v.x[1][1] ||
 | |
|            x[1][2] != v.x[1][2] ||
 | |
|            x[1][3] != v.x[1][3] ||
 | |
|            x[2][0] != v.x[2][0] ||
 | |
|            x[2][1] != v.x[2][1] ||
 | |
|            x[2][2] != v.x[2][2] ||
 | |
|            x[2][3] != v.x[2][3] ||
 | |
|            x[3][0] != v.x[3][0] ||
 | |
|            x[3][1] != v.x[3][1] ||
 | |
|            x[3][2] != v.x[3][2] ||
 | |
|            x[3][3] != v.x[3][3];
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         for (int j = 0; j < 4; j++)
 | |
|             if (!Imath::equalWithAbsError ((*this)[i][j], m[i][j], e))
 | |
|                 return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const
 | |
| {
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         for (int j = 0; j < 4; j++)
 | |
|             if (!Imath::equalWithRelError ((*this)[i][j], m[i][j], e))
 | |
|                 return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator += (const Matrix44<T> &v)
 | |
| {
 | |
|     x[0][0] += v.x[0][0];
 | |
|     x[0][1] += v.x[0][1];
 | |
|     x[0][2] += v.x[0][2];
 | |
|     x[0][3] += v.x[0][3];
 | |
|     x[1][0] += v.x[1][0];
 | |
|     x[1][1] += v.x[1][1];
 | |
|     x[1][2] += v.x[1][2];
 | |
|     x[1][3] += v.x[1][3];
 | |
|     x[2][0] += v.x[2][0];
 | |
|     x[2][1] += v.x[2][1];
 | |
|     x[2][2] += v.x[2][2];
 | |
|     x[2][3] += v.x[2][3];
 | |
|     x[3][0] += v.x[3][0];
 | |
|     x[3][1] += v.x[3][1];
 | |
|     x[3][2] += v.x[3][2];
 | |
|     x[3][3] += v.x[3][3];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator += (T a)
 | |
| {
 | |
|     x[0][0] += a;
 | |
|     x[0][1] += a;
 | |
|     x[0][2] += a;
 | |
|     x[0][3] += a;
 | |
|     x[1][0] += a;
 | |
|     x[1][1] += a;
 | |
|     x[1][2] += a;
 | |
|     x[1][3] += a;
 | |
|     x[2][0] += a;
 | |
|     x[2][1] += a;
 | |
|     x[2][2] += a;
 | |
|     x[2][3] += a;
 | |
|     x[3][0] += a;
 | |
|     x[3][1] += a;
 | |
|     x[3][2] += a;
 | |
|     x[3][3] += a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::operator + (const Matrix44<T> &v) const
 | |
| {
 | |
|     return Matrix44 (x[0][0] + v.x[0][0],
 | |
|                      x[0][1] + v.x[0][1],
 | |
|                      x[0][2] + v.x[0][2],
 | |
|                      x[0][3] + v.x[0][3],
 | |
|                      x[1][0] + v.x[1][0],
 | |
|                      x[1][1] + v.x[1][1],
 | |
|                      x[1][2] + v.x[1][2],
 | |
|                      x[1][3] + v.x[1][3],
 | |
|                      x[2][0] + v.x[2][0],
 | |
|                      x[2][1] + v.x[2][1],
 | |
|                      x[2][2] + v.x[2][2],
 | |
|                      x[2][3] + v.x[2][3],
 | |
|                      x[3][0] + v.x[3][0],
 | |
|                      x[3][1] + v.x[3][1],
 | |
|                      x[3][2] + v.x[3][2],
 | |
|                      x[3][3] + v.x[3][3]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator -= (const Matrix44<T> &v)
 | |
| {
 | |
|     x[0][0] -= v.x[0][0];
 | |
|     x[0][1] -= v.x[0][1];
 | |
|     x[0][2] -= v.x[0][2];
 | |
|     x[0][3] -= v.x[0][3];
 | |
|     x[1][0] -= v.x[1][0];
 | |
|     x[1][1] -= v.x[1][1];
 | |
|     x[1][2] -= v.x[1][2];
 | |
|     x[1][3] -= v.x[1][3];
 | |
|     x[2][0] -= v.x[2][0];
 | |
|     x[2][1] -= v.x[2][1];
 | |
|     x[2][2] -= v.x[2][2];
 | |
|     x[2][3] -= v.x[2][3];
 | |
|     x[3][0] -= v.x[3][0];
 | |
|     x[3][1] -= v.x[3][1];
 | |
|     x[3][2] -= v.x[3][2];
 | |
|     x[3][3] -= v.x[3][3];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator -= (T a)
 | |
| {
 | |
|     x[0][0] -= a;
 | |
|     x[0][1] -= a;
 | |
|     x[0][2] -= a;
 | |
|     x[0][3] -= a;
 | |
|     x[1][0] -= a;
 | |
|     x[1][1] -= a;
 | |
|     x[1][2] -= a;
 | |
|     x[1][3] -= a;
 | |
|     x[2][0] -= a;
 | |
|     x[2][1] -= a;
 | |
|     x[2][2] -= a;
 | |
|     x[2][3] -= a;
 | |
|     x[3][0] -= a;
 | |
|     x[3][1] -= a;
 | |
|     x[3][2] -= a;
 | |
|     x[3][3] -= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::operator - (const Matrix44<T> &v) const
 | |
| {
 | |
|     return Matrix44 (x[0][0] - v.x[0][0],
 | |
|                      x[0][1] - v.x[0][1],
 | |
|                      x[0][2] - v.x[0][2],
 | |
|                      x[0][3] - v.x[0][3],
 | |
|                      x[1][0] - v.x[1][0],
 | |
|                      x[1][1] - v.x[1][1],
 | |
|                      x[1][2] - v.x[1][2],
 | |
|                      x[1][3] - v.x[1][3],
 | |
|                      x[2][0] - v.x[2][0],
 | |
|                      x[2][1] - v.x[2][1],
 | |
|                      x[2][2] - v.x[2][2],
 | |
|                      x[2][3] - v.x[2][3],
 | |
|                      x[3][0] - v.x[3][0],
 | |
|                      x[3][1] - v.x[3][1],
 | |
|                      x[3][2] - v.x[3][2],
 | |
|                      x[3][3] - v.x[3][3]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::operator - () const
 | |
| {
 | |
|     return Matrix44 (-x[0][0],
 | |
|                      -x[0][1],
 | |
|                      -x[0][2],
 | |
|                      -x[0][3],
 | |
|                      -x[1][0],
 | |
|                      -x[1][1],
 | |
|                      -x[1][2],
 | |
|                      -x[1][3],
 | |
|                      -x[2][0],
 | |
|                      -x[2][1],
 | |
|                      -x[2][2],
 | |
|                      -x[2][3],
 | |
|                      -x[3][0],
 | |
|                      -x[3][1],
 | |
|                      -x[3][2],
 | |
|                      -x[3][3]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::negate ()
 | |
| {
 | |
|     x[0][0] = -x[0][0];
 | |
|     x[0][1] = -x[0][1];
 | |
|     x[0][2] = -x[0][2];
 | |
|     x[0][3] = -x[0][3];
 | |
|     x[1][0] = -x[1][0];
 | |
|     x[1][1] = -x[1][1];
 | |
|     x[1][2] = -x[1][2];
 | |
|     x[1][3] = -x[1][3];
 | |
|     x[2][0] = -x[2][0];
 | |
|     x[2][1] = -x[2][1];
 | |
|     x[2][2] = -x[2][2];
 | |
|     x[2][3] = -x[2][3];
 | |
|     x[3][0] = -x[3][0];
 | |
|     x[3][1] = -x[3][1];
 | |
|     x[3][2] = -x[3][2];
 | |
|     x[3][3] = -x[3][3];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator *= (T a)
 | |
| {
 | |
|     x[0][0] *= a;
 | |
|     x[0][1] *= a;
 | |
|     x[0][2] *= a;
 | |
|     x[0][3] *= a;
 | |
|     x[1][0] *= a;
 | |
|     x[1][1] *= a;
 | |
|     x[1][2] *= a;
 | |
|     x[1][3] *= a;
 | |
|     x[2][0] *= a;
 | |
|     x[2][1] *= a;
 | |
|     x[2][2] *= a;
 | |
|     x[2][3] *= a;
 | |
|     x[3][0] *= a;
 | |
|     x[3][1] *= a;
 | |
|     x[3][2] *= a;
 | |
|     x[3][3] *= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::operator * (T a) const
 | |
| {
 | |
|     return Matrix44 (x[0][0] * a,
 | |
|                      x[0][1] * a,
 | |
|                      x[0][2] * a,
 | |
|                      x[0][3] * a,
 | |
|                      x[1][0] * a,
 | |
|                      x[1][1] * a,
 | |
|                      x[1][2] * a,
 | |
|                      x[1][3] * a,
 | |
|                      x[2][0] * a,
 | |
|                      x[2][1] * a,
 | |
|                      x[2][2] * a,
 | |
|                      x[2][3] * a,
 | |
|                      x[3][0] * a,
 | |
|                      x[3][1] * a,
 | |
|                      x[3][2] * a,
 | |
|                      x[3][3] * a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Matrix44<T>
 | |
| operator * (T a, const Matrix44<T> &v)
 | |
| {
 | |
|     return v * a;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Matrix44<T> &
 | |
| Matrix44<T>::operator *= (const Matrix44<T> &v)
 | |
| {
 | |
|     Matrix44 tmp (T (0));
 | |
| 
 | |
|     multiply (*this, v, tmp);
 | |
|     *this = tmp;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Matrix44<T>
 | |
| Matrix44<T>::operator * (const Matrix44<T> &v) const
 | |
| {
 | |
|     Matrix44 tmp (T (0));
 | |
| 
 | |
|     multiply (*this, v, tmp);
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| Matrix44<T>::multiply (const Matrix44<T> &a,
 | |
|                        const Matrix44<T> &b,
 | |
|                        Matrix44<T> &c)
 | |
| {
 | |
|     register const T * IMATH_RESTRICT ap = &a.x[0][0];
 | |
|     register const T * IMATH_RESTRICT bp = &b.x[0][0];
 | |
|     register       T * IMATH_RESTRICT cp = &c.x[0][0];
 | |
| 
 | |
|     register T a0, a1, a2, a3;
 | |
| 
 | |
|     a0 = ap[0];
 | |
|     a1 = ap[1];
 | |
|     a2 = ap[2];
 | |
|     a3 = ap[3];
 | |
| 
 | |
|     cp[0]  = a0 * bp[0]  + a1 * bp[4]  + a2 * bp[8]  + a3 * bp[12];
 | |
|     cp[1]  = a0 * bp[1]  + a1 * bp[5]  + a2 * bp[9]  + a3 * bp[13];
 | |
|     cp[2]  = a0 * bp[2]  + a1 * bp[6]  + a2 * bp[10] + a3 * bp[14];
 | |
|     cp[3]  = a0 * bp[3]  + a1 * bp[7]  + a2 * bp[11] + a3 * bp[15];
 | |
| 
 | |
|     a0 = ap[4];
 | |
|     a1 = ap[5];
 | |
|     a2 = ap[6];
 | |
|     a3 = ap[7];
 | |
| 
 | |
|     cp[4]  = a0 * bp[0]  + a1 * bp[4]  + a2 * bp[8]  + a3 * bp[12];
 | |
|     cp[5]  = a0 * bp[1]  + a1 * bp[5]  + a2 * bp[9]  + a3 * bp[13];
 | |
|     cp[6]  = a0 * bp[2]  + a1 * bp[6]  + a2 * bp[10] + a3 * bp[14];
 | |
|     cp[7]  = a0 * bp[3]  + a1 * bp[7]  + a2 * bp[11] + a3 * bp[15];
 | |
| 
 | |
|     a0 = ap[8];
 | |
|     a1 = ap[9];
 | |
|     a2 = ap[10];
 | |
|     a3 = ap[11];
 | |
| 
 | |
|     cp[8]  = a0 * bp[0]  + a1 * bp[4]  + a2 * bp[8]  + a3 * bp[12];
 | |
|     cp[9]  = a0 * bp[1]  + a1 * bp[5]  + a2 * bp[9]  + a3 * bp[13];
 | |
|     cp[10] = a0 * bp[2]  + a1 * bp[6]  + a2 * bp[10] + a3 * bp[14];
 | |
|     cp[11] = a0 * bp[3]  + a1 * bp[7]  + a2 * bp[11] + a3 * bp[15];
 | |
| 
 | |
|     a0 = ap[12];
 | |
|     a1 = ap[13];
 | |
|     a2 = ap[14];
 | |
|     a3 = ap[15];
 | |
| 
 | |
|     cp[12] = a0 * bp[0]  + a1 * bp[4]  + a2 * bp[8]  + a3 * bp[12];
 | |
|     cp[13] = a0 * bp[1]  + a1 * bp[5]  + a2 * bp[9]  + a3 * bp[13];
 | |
|     cp[14] = a0 * bp[2]  + a1 * bp[6]  + a2 * bp[10] + a3 * bp[14];
 | |
|     cp[15] = a0 * bp[3]  + a1 * bp[7]  + a2 * bp[11] + a3 * bp[15];
 | |
| }
 | |
| 
 | |
| template <class T> template <class S>
 | |
| void
 | |
| Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const
 | |
| {
 | |
|     S a, b, c, w;
 | |
| 
 | |
|     a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0];
 | |
|     b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1];
 | |
|     c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2];
 | |
|     w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3];
 | |
| 
 | |
|     dst.x = a / w;
 | |
|     dst.y = b / w;
 | |
|     dst.z = c / w;
 | |
| }
 | |
| 
 | |
| template <class T> template <class S>
 | |
| void
 | |
| Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const
 | |
| {
 | |
|     S a, b, c;
 | |
| 
 | |
|     a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0];
 | |
|     b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1];
 | |
|     c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2];
 | |
| 
 | |
|     dst.x = a;
 | |
|     dst.y = b;
 | |
|     dst.z = c;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::operator /= (T a)
 | |
| {
 | |
|     x[0][0] /= a;
 | |
|     x[0][1] /= a;
 | |
|     x[0][2] /= a;
 | |
|     x[0][3] /= a;
 | |
|     x[1][0] /= a;
 | |
|     x[1][1] /= a;
 | |
|     x[1][2] /= a;
 | |
|     x[1][3] /= a;
 | |
|     x[2][0] /= a;
 | |
|     x[2][1] /= a;
 | |
|     x[2][2] /= a;
 | |
|     x[2][3] /= a;
 | |
|     x[3][0] /= a;
 | |
|     x[3][1] /= a;
 | |
|     x[3][2] /= a;
 | |
|     x[3][3] /= a;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::operator / (T a) const
 | |
| {
 | |
|     return Matrix44 (x[0][0] / a,
 | |
|                      x[0][1] / a,
 | |
|                      x[0][2] / a,
 | |
|                      x[0][3] / a,
 | |
|                      x[1][0] / a,
 | |
|                      x[1][1] / a,
 | |
|                      x[1][2] / a,
 | |
|                      x[1][3] / a,
 | |
|                      x[2][0] / a,
 | |
|                      x[2][1] / a,
 | |
|                      x[2][2] / a,
 | |
|                      x[2][3] / a,
 | |
|                      x[3][0] / a,
 | |
|                      x[3][1] / a,
 | |
|                      x[3][2] / a,
 | |
|                      x[3][3] / a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::transpose ()
 | |
| {
 | |
|     Matrix44 tmp (x[0][0],
 | |
|                   x[1][0],
 | |
|                   x[2][0],
 | |
|                   x[3][0],
 | |
|                   x[0][1],
 | |
|                   x[1][1],
 | |
|                   x[2][1],
 | |
|                   x[3][1],
 | |
|                   x[0][2],
 | |
|                   x[1][2],
 | |
|                   x[2][2],
 | |
|                   x[3][2],
 | |
|                   x[0][3],
 | |
|                   x[1][3],
 | |
|                   x[2][3],
 | |
|                   x[3][3]);
 | |
|     *this = tmp;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::transposed () const
 | |
| {
 | |
|     return Matrix44 (x[0][0],
 | |
|                      x[1][0],
 | |
|                      x[2][0],
 | |
|                      x[3][0],
 | |
|                      x[0][1],
 | |
|                      x[1][1],
 | |
|                      x[2][1],
 | |
|                      x[3][1],
 | |
|                      x[0][2],
 | |
|                      x[1][2],
 | |
|                      x[2][2],
 | |
|                      x[3][2],
 | |
|                      x[0][3],
 | |
|                      x[1][3],
 | |
|                      x[2][3],
 | |
|                      x[3][3]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::gjInvert (bool singExc) throw (Iex::MathExc)
 | |
| {
 | |
|     *this = gjInverse (singExc);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::gjInverse (bool singExc) const throw (Iex::MathExc)
 | |
| {
 | |
|     int i, j, k;
 | |
|     Matrix44 s;
 | |
|     Matrix44 t (*this);
 | |
| 
 | |
|     // Forward elimination
 | |
| 
 | |
|     for (i = 0; i < 3 ; i++)
 | |
|     {
 | |
|         int pivot = i;
 | |
| 
 | |
|         T pivotsize = t[i][i];
 | |
| 
 | |
|         if (pivotsize < 0)
 | |
|             pivotsize = -pivotsize;
 | |
| 
 | |
|         for (j = i + 1; j < 4; j++)
 | |
|         {
 | |
|             T tmp = t[j][i];
 | |
| 
 | |
|             if (tmp < 0)
 | |
|                 tmp = -tmp;
 | |
| 
 | |
|             if (tmp > pivotsize)
 | |
|             {
 | |
|                 pivot = j;
 | |
|                 pivotsize = tmp;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (pivotsize == 0)
 | |
|         {
 | |
|             if (singExc)
 | |
|                 throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
 | |
| 
 | |
|             return Matrix44();
 | |
|         }
 | |
| 
 | |
|         if (pivot != i)
 | |
|         {
 | |
|             for (j = 0; j < 4; j++)
 | |
|             {
 | |
|                 T tmp;
 | |
| 
 | |
|                 tmp = t[i][j];
 | |
|                 t[i][j] = t[pivot][j];
 | |
|                 t[pivot][j] = tmp;
 | |
| 
 | |
|                 tmp = s[i][j];
 | |
|                 s[i][j] = s[pivot][j];
 | |
|                 s[pivot][j] = tmp;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (j = i + 1; j < 4; j++)
 | |
|         {
 | |
|             T f = t[j][i] / t[i][i];
 | |
| 
 | |
|             for (k = 0; k < 4; k++)
 | |
|             {
 | |
|                 t[j][k] -= f * t[i][k];
 | |
|                 s[j][k] -= f * s[i][k];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Backward substitution
 | |
| 
 | |
|     for (i = 3; i >= 0; --i)
 | |
|     {
 | |
|         T f;
 | |
| 
 | |
|         if ((f = t[i][i]) == 0)
 | |
|         {
 | |
|             if (singExc)
 | |
|                 throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
 | |
| 
 | |
|             return Matrix44();
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < 4; j++)
 | |
|         {
 | |
|             t[i][j] /= f;
 | |
|             s[i][j] /= f;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < i; j++)
 | |
|         {
 | |
|             f = t[j][i];
 | |
| 
 | |
|             for (k = 0; k < 4; k++)
 | |
|             {
 | |
|                 t[j][k] -= f * t[i][k];
 | |
|                 s[j][k] -= f * s[i][k];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::invert (bool singExc) throw (Iex::MathExc)
 | |
| {
 | |
|     *this = inverse (singExc);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| Matrix44<T>::inverse (bool singExc) const throw (Iex::MathExc)
 | |
| {
 | |
|     if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1)
 | |
|         return gjInverse(singExc);
 | |
| 
 | |
|     Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
 | |
|                 x[2][1] * x[0][2] - x[0][1] * x[2][2],
 | |
|                 x[0][1] * x[1][2] - x[1][1] * x[0][2],
 | |
|                 0,
 | |
| 
 | |
|                 x[2][0] * x[1][2] - x[1][0] * x[2][2],
 | |
|                 x[0][0] * x[2][2] - x[2][0] * x[0][2],
 | |
|                 x[1][0] * x[0][2] - x[0][0] * x[1][2],
 | |
|                 0,
 | |
| 
 | |
|                 x[1][0] * x[2][1] - x[2][0] * x[1][1],
 | |
|                 x[2][0] * x[0][1] - x[0][0] * x[2][1],
 | |
|                 x[0][0] * x[1][1] - x[1][0] * x[0][1],
 | |
|                 0,
 | |
| 
 | |
|                 0,
 | |
|                 0,
 | |
|                 0,
 | |
|                 1);
 | |
| 
 | |
|     T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
 | |
| 
 | |
|     if (Imath::abs (r) >= 1)
 | |
|     {
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|         {
 | |
|             for (int j = 0; j < 3; ++j)
 | |
|             {
 | |
|                 s[i][j] /= r;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         T mr = Imath::abs (r) / limits<T>::smallest();
 | |
| 
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|         {
 | |
|             for (int j = 0; j < 3; ++j)
 | |
|             {
 | |
|                 if (mr > Imath::abs (s[i][j]))
 | |
|                 {
 | |
|                     s[i][j] /= r;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     if (singExc)
 | |
|                         throw SingMatrixExc ("Cannot invert singular matrix.");
 | |
| 
 | |
|                     return Matrix44();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0];
 | |
|     s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1];
 | |
|     s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2];
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix44<T>::fastMinor( const int r0, const int r1, const int r2,
 | |
|                         const int c0, const int c1, const int c2) const
 | |
| {
 | |
|     return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1])
 | |
|          + x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2])
 | |
|          + x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix44<T>::minorOf (const int r, const int c) const
 | |
| {
 | |
|     int r0 = 0 + (r < 1 ? 1 : 0);
 | |
|     int r1 = 1 + (r < 2 ? 1 : 0);
 | |
|     int r2 = 2 + (r < 3 ? 1 : 0);
 | |
|     int c0 = 0 + (c < 1 ? 1 : 0);
 | |
|     int c1 = 1 + (c < 2 ? 1 : 0);
 | |
|     int c2 = 2 + (c < 3 ? 1 : 0);
 | |
| 
 | |
|     Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0],
 | |
|                          x[r0][c1],x[r1][c1],x[r2][c1],
 | |
|                          x[r0][c2],x[r1][c2],x[r2][c2]);
 | |
| 
 | |
|     return working.determinant();
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T
 | |
| Matrix44<T>::determinant () const
 | |
| {
 | |
|     T sum = (T)0;
 | |
| 
 | |
|     if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(1,2,3,0,1,2);
 | |
|     if (x[1][3] != 0.) sum += x[1][3] * fastMinor(0,2,3,0,1,2);
 | |
|     if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(0,1,3,0,1,2);
 | |
|     if (x[3][3] != 0.) sum += x[3][3] * fastMinor(0,1,2,0,1,2);
 | |
| 
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setEulerAngles (const Vec3<S>& r)
 | |
| {
 | |
|     S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
 | |
| 
 | |
|     cos_rz = Math<T>::cos (r[2]);
 | |
|     cos_ry = Math<T>::cos (r[1]);
 | |
|     cos_rx = Math<T>::cos (r[0]);
 | |
| 
 | |
|     sin_rz = Math<T>::sin (r[2]);
 | |
|     sin_ry = Math<T>::sin (r[1]);
 | |
|     sin_rx = Math<T>::sin (r[0]);
 | |
| 
 | |
|     x[0][0] =  cos_rz * cos_ry;
 | |
|     x[0][1] =  sin_rz * cos_ry;
 | |
|     x[0][2] = -sin_ry;
 | |
|     x[0][3] =  0;
 | |
| 
 | |
|     x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx;
 | |
|     x[1][1] =  cos_rz * cos_rx + sin_rz * sin_ry * sin_rx;
 | |
|     x[1][2] =  cos_ry * sin_rx;
 | |
|     x[1][3] =  0;
 | |
| 
 | |
|     x[2][0] =  sin_rz * sin_rx + cos_rz * sin_ry * cos_rx;
 | |
|     x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx;
 | |
|     x[2][2] =  cos_ry * cos_rx;
 | |
|     x[2][3] =  0;
 | |
| 
 | |
|     x[3][0] =  0;
 | |
|     x[3][1] =  0;
 | |
|     x[3][2] =  0;
 | |
|     x[3][3] =  1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle)
 | |
| {
 | |
|     Vec3<S> unit (axis.normalized());
 | |
|     S sine   = Math<T>::sin (angle);
 | |
|     S cosine = Math<T>::cos (angle);
 | |
| 
 | |
|     x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine;
 | |
|     x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine;
 | |
|     x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine;
 | |
|     x[0][3] = 0;
 | |
| 
 | |
|     x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine;
 | |
|     x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine;
 | |
|     x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine;
 | |
|     x[1][3] = 0;
 | |
| 
 | |
|     x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine;
 | |
|     x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine;
 | |
|     x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine;
 | |
|     x[2][3] = 0;
 | |
| 
 | |
|     x[3][0] = 0;
 | |
|     x[3][1] = 0;
 | |
|     x[3][2] = 0;
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::rotate (const Vec3<S> &r)
 | |
| {
 | |
|     S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
 | |
|     S m00, m01, m02;
 | |
|     S m10, m11, m12;
 | |
|     S m20, m21, m22;
 | |
| 
 | |
|     cos_rz = Math<S>::cos (r[2]);
 | |
|     cos_ry = Math<S>::cos (r[1]);
 | |
|     cos_rx = Math<S>::cos (r[0]);
 | |
| 
 | |
|     sin_rz = Math<S>::sin (r[2]);
 | |
|     sin_ry = Math<S>::sin (r[1]);
 | |
|     sin_rx = Math<S>::sin (r[0]);
 | |
| 
 | |
|     m00 =  cos_rz *  cos_ry;
 | |
|     m01 =  sin_rz *  cos_ry;
 | |
|     m02 = -sin_ry;
 | |
|     m10 = -sin_rz *  cos_rx + cos_rz * sin_ry * sin_rx;
 | |
|     m11 =  cos_rz *  cos_rx + sin_rz * sin_ry * sin_rx;
 | |
|     m12 =  cos_ry *  sin_rx;
 | |
|     m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx;
 | |
|     m21 =  cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx;
 | |
|     m22 =  cos_ry *  cos_rx;
 | |
| 
 | |
|     Matrix44<T> P (*this);
 | |
| 
 | |
|     x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02;
 | |
|     x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02;
 | |
|     x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02;
 | |
|     x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02;
 | |
| 
 | |
|     x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12;
 | |
|     x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12;
 | |
|     x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12;
 | |
|     x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12;
 | |
| 
 | |
|     x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22;
 | |
|     x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22;
 | |
|     x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22;
 | |
|     x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setScale (T s)
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = s;
 | |
|     x[1][1] = s;
 | |
|     x[2][2] = s;
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setScale (const Vec3<S> &s)
 | |
| {
 | |
|     memset (x, 0, sizeof (x));
 | |
|     x[0][0] = s[0];
 | |
|     x[1][1] = s[1];
 | |
|     x[2][2] = s[2];
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::scale (const Vec3<S> &s)
 | |
| {
 | |
|     x[0][0] *= s[0];
 | |
|     x[0][1] *= s[0];
 | |
|     x[0][2] *= s[0];
 | |
|     x[0][3] *= s[0];
 | |
| 
 | |
|     x[1][0] *= s[1];
 | |
|     x[1][1] *= s[1];
 | |
|     x[1][2] *= s[1];
 | |
|     x[1][3] *= s[1];
 | |
| 
 | |
|     x[2][0] *= s[2];
 | |
|     x[2][1] *= s[2];
 | |
|     x[2][2] *= s[2];
 | |
|     x[2][3] *= s[2];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setTranslation (const Vec3<S> &t)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = 0;
 | |
|     x[0][2] = 0;
 | |
|     x[0][3] = 0;
 | |
| 
 | |
|     x[1][0] = 0;
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = 0;
 | |
|     x[1][3] = 0;
 | |
| 
 | |
|     x[2][0] = 0;
 | |
|     x[2][1] = 0;
 | |
|     x[2][2] = 1;
 | |
|     x[2][3] = 0;
 | |
| 
 | |
|     x[3][0] = t[0];
 | |
|     x[3][1] = t[1];
 | |
|     x[3][2] = t[2];
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline const Vec3<T>
 | |
| Matrix44<T>::translation () const
 | |
| {
 | |
|     return Vec3<T> (x[3][0], x[3][1], x[3][2]);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::translate (const Vec3<S> &t)
 | |
| {
 | |
|     x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0];
 | |
|     x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1];
 | |
|     x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2];
 | |
|     x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3];
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setShear (const Vec3<S> &h)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = 0;
 | |
|     x[0][2] = 0;
 | |
|     x[0][3] = 0;
 | |
| 
 | |
|     x[1][0] = h[0];
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = 0;
 | |
|     x[1][3] = 0;
 | |
| 
 | |
|     x[2][0] = h[1];
 | |
|     x[2][1] = h[2];
 | |
|     x[2][2] = 1;
 | |
|     x[2][3] = 0;
 | |
| 
 | |
|     x[3][0] = 0;
 | |
|     x[3][1] = 0;
 | |
|     x[3][2] = 0;
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::setShear (const Shear6<S> &h)
 | |
| {
 | |
|     x[0][0] = 1;
 | |
|     x[0][1] = h.yx;
 | |
|     x[0][2] = h.zx;
 | |
|     x[0][3] = 0;
 | |
| 
 | |
|     x[1][0] = h.xy;
 | |
|     x[1][1] = 1;
 | |
|     x[1][2] = h.zy;
 | |
|     x[1][3] = 0;
 | |
| 
 | |
|     x[2][0] = h.xz;
 | |
|     x[2][1] = h.yz;
 | |
|     x[2][2] = 1;
 | |
|     x[2][3] = 0;
 | |
| 
 | |
|     x[3][0] = 0;
 | |
|     x[3][1] = 0;
 | |
|     x[3][2] = 0;
 | |
|     x[3][3] = 1;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::shear (const Vec3<S> &h)
 | |
| {
 | |
|     //
 | |
|     // In this case, we don't need a temp. copy of the matrix
 | |
|     // because we never use a value on the RHS after we've
 | |
|     // changed it on the LHS.
 | |
|     //
 | |
| 
 | |
|     for (int i=0; i < 4; i++)
 | |
|     {
 | |
|         x[2][i] += h[1] * x[0][i] + h[2] * x[1][i];
 | |
|         x[1][i] += h[0] * x[0][i];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| template <class S>
 | |
| const Matrix44<T> &
 | |
| Matrix44<T>::shear (const Shear6<S> &h)
 | |
| {
 | |
|     Matrix44<T> P (*this);
 | |
| 
 | |
|     for (int i=0; i < 4; i++)
 | |
|     {
 | |
|         x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i];
 | |
|         x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i];
 | |
|         x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i];
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| //--------------------------------
 | |
| // Implementation of stream output
 | |
| //--------------------------------
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &
 | |
| operator << (std::ostream &s, const Matrix33<T> &m)
 | |
| {
 | |
|     std::ios_base::fmtflags oldFlags = s.flags();
 | |
|     int width;
 | |
| 
 | |
|     if (s.flags() & std::ios_base::fixed)
 | |
|     {
 | |
|         s.setf (std::ios_base::showpoint);
 | |
|         width = s.precision() + 5;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         s.setf (std::ios_base::scientific);
 | |
|         s.setf (std::ios_base::showpoint);
 | |
|         width = s.precision() + 8;
 | |
|     }
 | |
| 
 | |
|     s << "(" << std::setw (width) << m[0][0] <<
 | |
|          " " << std::setw (width) << m[0][1] <<
 | |
|          " " << std::setw (width) << m[0][2] << "\n" <<
 | |
| 
 | |
|          " " << std::setw (width) << m[1][0] <<
 | |
|          " " << std::setw (width) << m[1][1] <<
 | |
|          " " << std::setw (width) << m[1][2] << "\n" <<
 | |
| 
 | |
|          " " << std::setw (width) << m[2][0] <<
 | |
|          " " << std::setw (width) << m[2][1] <<
 | |
|          " " << std::setw (width) << m[2][2] << ")\n";
 | |
| 
 | |
|     s.flags (oldFlags);
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| std::ostream &
 | |
| operator << (std::ostream &s, const Matrix44<T> &m)
 | |
| {
 | |
|     std::ios_base::fmtflags oldFlags = s.flags();
 | |
|     int width;
 | |
| 
 | |
|     if (s.flags() & std::ios_base::fixed)
 | |
|     {
 | |
|         s.setf (std::ios_base::showpoint);
 | |
|         width = s.precision() + 5;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         s.setf (std::ios_base::scientific);
 | |
|         s.setf (std::ios_base::showpoint);
 | |
|         width = s.precision() + 8;
 | |
|     }
 | |
| 
 | |
|     s << "(" << std::setw (width) << m[0][0] <<
 | |
|          " " << std::setw (width) << m[0][1] <<
 | |
|          " " << std::setw (width) << m[0][2] <<
 | |
|          " " << std::setw (width) << m[0][3] << "\n" <<
 | |
| 
 | |
|          " " << std::setw (width) << m[1][0] <<
 | |
|          " " << std::setw (width) << m[1][1] <<
 | |
|          " " << std::setw (width) << m[1][2] <<
 | |
|          " " << std::setw (width) << m[1][3] << "\n" <<
 | |
| 
 | |
|          " " << std::setw (width) << m[2][0] <<
 | |
|          " " << std::setw (width) << m[2][1] <<
 | |
|          " " << std::setw (width) << m[2][2] <<
 | |
|          " " << std::setw (width) << m[2][3] << "\n" <<
 | |
| 
 | |
|          " " << std::setw (width) << m[3][0] <<
 | |
|          " " << std::setw (width) << m[3][1] <<
 | |
|          " " << std::setw (width) << m[3][2] <<
 | |
|          " " << std::setw (width) << m[3][3] << ")\n";
 | |
| 
 | |
|     s.flags (oldFlags);
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------------------------
 | |
| // Implementation of vector-times-matrix multiplication operators
 | |
| //---------------------------------------------------------------
 | |
| 
 | |
| template <class S, class T>
 | |
| inline const Vec2<S> &
 | |
| operator *= (Vec2<S> &v, const Matrix33<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
 | |
|     S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
 | |
| 
 | |
|     v.x = x / w;
 | |
|     v.y = y / w;
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| template <class S, class T>
 | |
| inline Vec2<S>
 | |
| operator * (const Vec2<S> &v, const Matrix33<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
 | |
|     S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
 | |
| 
 | |
|     return Vec2<S> (x / w, y / w);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class S, class T>
 | |
| inline const Vec3<S> &
 | |
| operator *= (Vec3<S> &v, const Matrix33<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
 | |
| 
 | |
|     v.x = x;
 | |
|     v.y = y;
 | |
|     v.z = z;
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| template <class S, class T>
 | |
| inline Vec3<S>
 | |
| operator * (const Vec3<S> &v, const Matrix33<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
 | |
| 
 | |
|     return Vec3<S> (x, y, z);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class S, class T>
 | |
| inline const Vec3<S> &
 | |
| operator *= (Vec3<S> &v, const Matrix44<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
 | |
|     S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
 | |
| 
 | |
|     v.x = x / w;
 | |
|     v.y = y / w;
 | |
|     v.z = z / w;
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| template <class S, class T>
 | |
| inline Vec3<S>
 | |
| operator * (const Vec3<S> &v, const Matrix44<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
 | |
|     S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
 | |
| 
 | |
|     return Vec3<S> (x / w, y / w, z / w);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class S, class T>
 | |
| inline const Vec4<S> &
 | |
| operator *= (Vec4<S> &v, const Matrix44<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
 | |
|     S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
 | |
| 
 | |
|     v.x = x;
 | |
|     v.y = y;
 | |
|     v.z = z;
 | |
|     v.w = w;
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| template <class S, class T>
 | |
| inline Vec4<S>
 | |
| operator * (const Vec4<S> &v, const Matrix44<T> &m)
 | |
| {
 | |
|     S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
 | |
|     S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
 | |
|     S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
 | |
|     S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
 | |
| 
 | |
|     return Vec4<S> (x, y, z, w);
 | |
| }
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif
 | 
