288 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHLINEALGO_H
 | |
| #define INCLUDED_IMATHLINEALGO_H
 | |
| 
 | |
| //------------------------------------------------------------------
 | |
| //
 | |
| //	This file contains algorithms applied to or in conjunction
 | |
| //	with lines (Imath::Line). These algorithms may require
 | |
| //	more headers to compile. The assumption made is that these
 | |
| //	functions are called much less often than the basic line
 | |
| //	functions or these functions require more support classes
 | |
| //
 | |
| //	Contains:
 | |
| //
 | |
| //	bool closestPoints(const Line<T>& line1,
 | |
| //			   const Line<T>& line2,
 | |
| //			   Vec3<T>& point1,
 | |
| //			   Vec3<T>& point2)
 | |
| //
 | |
| //	bool intersect( const Line3<T> &line,
 | |
| //			const Vec3<T> &v0,
 | |
| //			const Vec3<T> &v1,
 | |
| //			const Vec3<T> &v2,
 | |
| //			Vec3<T> &pt,
 | |
| //			Vec3<T> &barycentric,
 | |
| //			bool &front)
 | |
| //
 | |
| //      V3f
 | |
| //      closestVertex(const Vec3<T> &v0,
 | |
| //                    const Vec3<T> &v1,
 | |
| //                    const Vec3<T> &v2,
 | |
| //                    const Line3<T> &l)
 | |
| //
 | |
| //	V3f
 | |
| //	rotatePoint(const Vec3<T> p, Line3<T> l, float angle)
 | |
| //
 | |
| //------------------------------------------------------------------
 | |
| 
 | |
| #include "ImathLine.h"
 | |
| #include "ImathVecAlgo.h"
 | |
| #include "ImathFun.h"
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| closestPoints
 | |
|     (const Line3<T>& line1,
 | |
|      const Line3<T>& line2,
 | |
|      Vec3<T>& point1,
 | |
|      Vec3<T>& point2)
 | |
| {
 | |
|     //
 | |
|     // Compute point1 and point2 such that point1 is on line1, point2
 | |
|     // is on line2 and the distance between point1 and point2 is minimal.
 | |
|     // This function returns true if point1 and point2 can be computed,
 | |
|     // or false if line1 and line2 are parallel or nearly parallel.
 | |
|     // This function assumes that line1.dir and line2.dir are normalized.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> w = line1.pos - line2.pos;
 | |
|     T d1w = line1.dir ^ w;
 | |
|     T d2w = line2.dir ^ w;
 | |
|     T d1d2 = line1.dir ^ line2.dir;
 | |
|     T n1 = d1d2 * d2w - d1w;
 | |
|     T n2 = d2w - d1d2 * d1w;
 | |
|     T d = 1 - d1d2 * d1d2;
 | |
|     T absD = abs (d);
 | |
| 
 | |
|     if ((absD > 1) ||
 | |
|     (abs (n1) < limits<T>::max() * absD &&
 | |
|      abs (n2) < limits<T>::max() * absD))
 | |
|     {
 | |
|     point1 = line1 (n1 / d);
 | |
|     point2 = line2 (n2 / d);
 | |
|     return true;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| intersect
 | |
|     (const Line3<T> &line,
 | |
|      const Vec3<T> &v0,
 | |
|      const Vec3<T> &v1,
 | |
|      const Vec3<T> &v2,
 | |
|      Vec3<T> &pt,
 | |
|      Vec3<T> &barycentric,
 | |
|      bool &front)
 | |
| {
 | |
|     //
 | |
|     // Given a line and a triangle (v0, v1, v2), the intersect() function
 | |
|     // finds the intersection of the line and the plane that contains the
 | |
|     // triangle.
 | |
|     //
 | |
|     // If the intersection point cannot be computed, either because the
 | |
|     // line and the triangle's plane are nearly parallel or because the
 | |
|     // triangle's area is very small, intersect() returns false.
 | |
|     //
 | |
|     // If the intersection point is outside the triangle, intersect
 | |
|     // returns false.
 | |
|     //
 | |
|     // If the intersection point, pt, is inside the triangle, intersect()
 | |
|     // computes a front-facing flag and the barycentric coordinates of
 | |
|     // the intersection point, and returns true.
 | |
|     //
 | |
|     // The front-facing flag is true if the dot product of the triangle's
 | |
|     // normal, (v2-v1)%(v1-v0), and the line's direction is negative.
 | |
|     //
 | |
|     // The barycentric coordinates have the following property:
 | |
|     //
 | |
|     //     pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
 | |
|     //
 | |
| 
 | |
|     Vec3<T> edge0 = v1 - v0;
 | |
|     Vec3<T> edge1 = v2 - v1;
 | |
|     Vec3<T> normal = edge1 % edge0;
 | |
| 
 | |
|     T l = normal.length();
 | |
| 
 | |
|     if (l != 0)
 | |
|     normal /= l;
 | |
|     else
 | |
|     return false;	// zero-area triangle
 | |
| 
 | |
|     //
 | |
|     // d is the distance of line.pos from the plane that contains the triangle.
 | |
|     // The intersection point is at line.pos + (d/nd) * line.dir.
 | |
|     //
 | |
| 
 | |
|     T d = normal ^ (v0 - line.pos);
 | |
|     T nd = normal ^ line.dir;
 | |
| 
 | |
|     if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd))
 | |
|     pt = line (d / nd);
 | |
|     else
 | |
|     return false;  // line and plane are nearly parallel
 | |
| 
 | |
|     //
 | |
|     // Compute the barycentric coordinates of the intersection point.
 | |
|     // The intersection is inside the triangle if all three barycentric
 | |
|     // coordinates are between zero and one.
 | |
|     //
 | |
| 
 | |
|     {
 | |
|     Vec3<T> en = edge0.normalized();
 | |
|     Vec3<T> a = pt - v0;
 | |
|     Vec3<T> b = v2 - v0;
 | |
|     Vec3<T> c = (a - en * (en ^ a));
 | |
|     Vec3<T> d = (b - en * (en ^ b));
 | |
|     T e = c ^ d;
 | |
|     T f = d ^ d;
 | |
| 
 | |
|     if (e >= 0 && e <= f)
 | |
|         barycentric.z = e / f;
 | |
|     else
 | |
|         return false; // outside
 | |
|     }
 | |
| 
 | |
|     {
 | |
|     Vec3<T> en = edge1.normalized();
 | |
|     Vec3<T> a = pt - v1;
 | |
|     Vec3<T> b = v0 - v1;
 | |
|     Vec3<T> c = (a - en * (en ^ a));
 | |
|     Vec3<T> d = (b - en * (en ^ b));
 | |
|     T e = c ^ d;
 | |
|     T f = d ^ d;
 | |
| 
 | |
|     if (e >= 0 && e <= f)
 | |
|         barycentric.x = e / f;
 | |
|     else
 | |
|         return false; // outside
 | |
|     }
 | |
| 
 | |
|     barycentric.y = 1 - barycentric.x - barycentric.z;
 | |
| 
 | |
|     if (barycentric.y < 0)
 | |
|     return false; // outside
 | |
| 
 | |
|     front = ((line.dir ^ normal) < 0);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Vec3<T>
 | |
| closestVertex
 | |
|     (const Vec3<T> &v0,
 | |
|      const Vec3<T> &v1,
 | |
|      const Vec3<T> &v2,
 | |
|      const Line3<T> &l)
 | |
| {
 | |
|     Vec3<T> nearest = v0;
 | |
|     T neardot       = (v0 - l.closestPointTo(v0)).length2();
 | |
| 
 | |
|     T tmp           = (v1 - l.closestPointTo(v1)).length2();
 | |
| 
 | |
|     if (tmp < neardot)
 | |
|     {
 | |
|         neardot = tmp;
 | |
|         nearest = v1;
 | |
|     }
 | |
| 
 | |
|     tmp = (v2 - l.closestPointTo(v2)).length2();
 | |
|     if (tmp < neardot)
 | |
|     {
 | |
|         neardot = tmp;
 | |
|         nearest = v2;
 | |
|     }
 | |
| 
 | |
|     return nearest;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Vec3<T>
 | |
| rotatePoint (const Vec3<T> p, Line3<T> l, T angle)
 | |
| {
 | |
|     //
 | |
|     // Rotate the point p around the line l by the given angle.
 | |
|     //
 | |
| 
 | |
|     //
 | |
|     // Form a coordinate frame with <x,y,a>. The rotation is the in xy
 | |
|     // plane.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> q = l.closestPointTo(p);
 | |
|     Vec3<T> x = p - q;
 | |
|     T radius = x.length();
 | |
| 
 | |
|     x.normalize();
 | |
|     Vec3<T> y = (x % l.dir).normalize();
 | |
| 
 | |
|     T cosangle = Math<T>::cos(angle);
 | |
|     T sinangle = Math<T>::sin(angle);
 | |
| 
 | |
|     Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
